High-resolution CT Image Retrieval Using Sparse Convolutional Neural Network

被引:3
|
作者
Lei, Yang [1 ,2 ]
Xu, Dong [3 ]
Zhou, Zhengyang [4 ]
Higgins, Kristin [1 ,2 ]
Dong, Xue [1 ,2 ]
Liu, Tian [1 ,2 ]
Shim, Hyunsuk [1 ,2 ,5 ]
Mao, Hui [2 ,5 ]
Curran, Walter J. [1 ,2 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Zhejiang Canc Hosp, Dept Ultrasound Imaging, Hangzhou 310022, Zhejiang, Peoples R China
[4] Nanjing Univ, Sch Med, Affiliated Hosp, Dept Radiol,Nanjing Drum Tower Hosp, Nanjing 210008, Jiangsu, Peoples R China
[5] Emory Univ, Dept Radiat Oncol & Imaging Sci, Atlanta, GA 30322 USA
基金
美国国家卫生研究院;
关键词
High-resolution image retrieval; convolutional neural network; CT; THRESHOLDING ALGORITHM; RADIATION-THERAPY; REGISTRATION; MRI;
D O I
10.1117/12.2292891
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a high-resolution CT image retrieval method based on sparse convolutional neural network. The proposed framework is used to train the end-to-end mapping from low-resolution to high-resolution images. The patch-wise feature of low-resolution CT is extracted and sparsely represented by a convolutional layer and a learned iterative shrinkage threshold framework, respectively. Restricted linear unit is utilized to non-linearly map the low-resolution sparse coefficients to the high-resolution ones. An adaptive high-resolution dictionary is applied to construct the informative signature which is highly connected to a high-resolution patch. Finally, we feed the signature to a convolutional layer to reconstruct the predicted high-resolution patches and average these overlapping patches to generate high-resolution CT. The loss function between reconstructed images and the corresponding ground truth high-resolution images is applied to optimize the parameters of end-to-end neural network. The well-trained map is used to generate the high-resolution CT from a new low-resolution input. This technique was tested with brain and lung CT images and the image quality was assessed using the corresponding CT images. Peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) and mean absolute error (MAE) indexes were used to quantify the differences between the generated high-resolution and corresponding ground truth CT images. The experimental results showed the proposed method could enhance images resolution from low-resolution images. The proposed method has great potential in improving radiation dose calculation and delivery accuracy and decreasing CT radiation exposure of patients.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Exploiting representations from pre-trained convolutional neural networks for high-resolution remote sensing image retrieval
    Ge, Yun
    Jiang, Shunliang
    Xu, Qingyong
    Jiang, Changlong
    Ye, Famao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) : 17489 - 17515
  • [32] Vehicle Detection and Counting in High-Resolution Aerial Images Using Convolutional Regression Neural Network
    Tayara, Hilal
    Soo, Kim Gil
    Chong, Kil To
    IEEE ACCESS, 2018, 6 : 2220 - 2230
  • [33] Low Resolution Image Fish Classification Using Convolutional Neural Network
    Rachmatullah, Muhammad Naufal
    Supriana, Iping
    2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), 2018, : 78 - 83
  • [34] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [35] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [36] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [37] Aircraft Conflict Resolution Using Convolutional Neural Network on Trajectory Image
    Rahman, Md Siddiqur
    Lapasset, Laurent
    Mothe, Josiane
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 806 - 815
  • [38] De-aliased high-resolution Radon transform based on the sparse prior information from the convolutional neural network
    Feng, Luyu
    Xue, Yaru
    Chen, Chong
    Guo, Mengjun
    Shen, Hewei
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2022, 19 (04) : 663 - 680
  • [39] Single-Image Super Resolution Using Convolutional Neural Network
    Symolon, William
    Dagli, Cihan
    BIG DATA, IOT, AND AI FOR A SMARTER FUTURE, 2021, 185 : 213 - 222
  • [40] East Nusa Tenggara Weaving Image Retrieval Using Convolutional Neural Network
    Tena, Silvester
    Hartanto, Rudy
    Ardiyanto, Igi
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,