Grassmannian flows and applications to non-commutative non-local and local integrable systems

被引:9
|
作者
Doikou, Anastasia [1 ]
Malham, Simon J. A. [1 ]
Stylianidis, Ioannis [1 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Nonlocal non-commutative integrable systems; Grassmannian flows; FREDHOLM DETERMINANTS; TAU-FUNCTION; EQUATIONS; LINEARIZATION;
D O I
10.1016/j.physd.2020.132744
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for linearising classes of matrix-valued nonlinear partial differential equations with local and nonlocal nonlinearities. Indeed we generalise a linearisation procedure originally developed by Poppe based on solving the corresponding underlying linear partial differential equation to generate an evolutionary Hankel operator for the 'scattering data', and then solving a linear Fredholm equation akin to the Marchenko equation to generate the evolutionary solution to the nonlinear partial differential system. Our generalisation involves inflating the underlying linear partial differential system for the scattering data to incorporate corresponding adjoint, reverse time or reverse space-time data, and it also allows for Hankel operators with matrix-valued kernels. With this approach we show how to linearise the matrix nonlinear Schrodinger and modified Korteweg de Vries equations as well as nonlocal reverse time and/or reverse space-time versions of these systems. Further, we formulate a unified linearisation procedure that incorporates all these systems as special cases. Further still, we demonstrate all such systems are example Fredholm Grassmannian flows. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Non-commutative Geometry and Applications to Physical Systems
    Zaim, Slimane
    COMPUTATIONAL ANALYSIS, AMAT 2015, 2016, 155 : 313 - 323
  • [22] NON-LOCAL FIELD AND NON-LOCAL INTERACTION
    KATAYAMA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1952, 8 (03): : 381 - 382
  • [23] Non-commutative Ricci and Calabi flows
    Zuevsky, A.
    ANNALES HENRI POINCARE, 2006, 7 (7-8): : 1569 - 1578
  • [24] Global action-angle variables for non-commutative integrable systems
    Fernandes, Rui Loja
    Laurent-Gengoux, Camille
    Vanhaecke, Pol
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (03) : 645 - 699
  • [25] Non-Commutative Ricci and Calabi Flows
    A. Zuevsky
    Annales Henri Poincaré, 2006, 7 : 1569 - 1578
  • [27] Non-commutative measure of quantum correlations under local operations
    Bussandri, D. G.
    Majtey, A. P.
    Valdes-Hernandez, A.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (02)
  • [28] Non-commutative measure of quantum correlations under local operations
    D. G. Bussandri
    A. P. Majtey
    A. Valdés-Hernández
    Quantum Information Processing, 2019, 18
  • [29] K-2 OF NON-COMMUTATIVE LOCAL-RINGS
    KOLSTER, M
    JOURNAL OF ALGEBRA, 1985, 95 (01) : 173 - 200
  • [30] COLp spaces -: the local structure of non-commutative Lp spaces
    Junge, M
    Nielsen, NJ
    Ruan, ZJ
    Xu, Q
    ADVANCES IN MATHEMATICS, 2004, 187 (02) : 257 - 319