STOCHASTIC CALCULUS FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS

被引:0
|
作者
Chen, Chuan-Zhong [1 ]
Ma, Li [1 ]
Sun, Wei [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Semi-Dirichlet form; Fukushima type decomposition; zero quadratic variation process; Nakao's integral; Ito's formula; ADDITIVE-FUNCTIONALS; DECOMPOSITION;
D O I
10.2748/tmj/1520564420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new Fukushima type decomposition in the framework of semiDirichlet forms. This generalizes the result of Ma, Sun and Wang [17, Theorem 1.4] by removing the condition (S). We also extend Nakao's integral to semi-Dirichlet forms and derive Ito's formula related to it.
引用
收藏
页码:97 / 119
页数:23
相关论文
共 50 条
  • [21] ON DUAL GENERATORS FOR NON-LOCAL SEMI-DIRICHLET FORMS
    Uemura, Toshihiro
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2014, 34 (02): : 199 - 214
  • [22] Maximum principles for subharmonic functions via local semi-Dirichlet forms
    Kuwae, Kazuhiro
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (04): : 822 - 874
  • [24] Bivariate Revuz Measures and the Feynman-Kac Formula on Semi-Dirichlet Forms
    Liping Li
    Jiangang Ying
    Potential Analysis, 2015, 42 : 775 - 808
  • [25] Stochastic calculus for symmetric Markov processes
    Chen, Z. -Q.
    Fitzsimmons, P. J.
    Kuwae, K.
    Zhang, T. -S.
    ANNALS OF PROBABILITY, 2008, 36 (03): : 931 - 970
  • [26] Bivariate Revuz Measures and the Feynman-Kac Formula on Semi-Dirichlet Forms
    Li, Liping
    Ying, Jiangang
    POTENTIAL ANALYSIS, 2015, 42 (04) : 775 - 808
  • [27] On Calabi's Strong Maximum Principle via Local Semi-Dirichlet Forms
    Kuwae, Kazuhiro
    POTENTIAL ANALYSIS, 2012, 37 (04) : 387 - 413
  • [28] On Calabi’s Strong Maximum Principle via Local Semi-Dirichlet Forms
    Kazuhiro Kuwae
    Potential Analysis, 2012, 37 : 387 - 413
  • [29] ON STOCHASTIC COUNTING PROCESSES ASSOCIATED WITH A SEMI-MARKOV PROCESS
    TAINITER, M
    JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (04): : 734 - 744
  • [30] On Stochastic Calculus and Diffusion Approximation to Markov Processes
    Orman, Gabriel V.
    Radomir, Irinel
    CHAOS AND COMPLEX SYSTEMS, 2013, : 239 - 243