Numerical simulation of a new water management for PEM fuel cell using magnet particles deposited in the cathode side catalyst layer

被引:28
|
作者
Wang, LB
Wakayama, NI
Okada, T
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan
[2] Lanzhou Raiway Inst, Lanzhou 730070, Gansu, Peoples R China
关键词
water management; Kelvin force; magnet particles; numerical simulation; proton exchange membrane fuel cell;
D O I
10.1016/S1388-2481(02)00383-1
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cathode flooding caused by excessive liquid water is generally recognized as the primary reason for poor cell performance. Recently, when some magnet particles are deposited in the catalyst layer of a cathode and magnetized, the cell performance has been improved compared with that of non-magnetized case. Numerical simulation to explain this phenomenon shows (1) the repulsive Kelvin force caused by the magnet particles manages the liquid water flow in the porous electrode layer; (2) the saturation level of liquid water (s) near the catalyst interface decreases with increasing the residual magnetic flux density of the magnet particle (B-r); (3) the magnet particles improves the fuel cell performance by decreasing the value of s and making more pore space for oxygen gas, and the cell performance of a proton-exchange-membrane (PEM) fuel is improved in the current limited region. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:584 / 588
页数:5
相关论文
共 50 条
  • [21] Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice Boltzmann method
    Molaeimanesh, G. R.
    Akbari, M. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (15) : 5169 - 5185
  • [22] A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell
    Khajeh-Hosseini-Dalasm, N.
    Kermani, M. J.
    Moghaddam, D. Ghadiri
    Stockie, J. M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (06) : 2417 - 2427
  • [23] Anti-flooding cathode catalyst layer for high performance PEM fuel cell
    Li, Aidan
    Chan, Siew Hwa
    Nguyen, Nam-trung
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) : 897 - 900
  • [24] Numerical analysis on the liquid saturation at the cathode side of a PEM fuel cell with different flow paths
    Ceballos, J. O.
    Sierra, J. M.
    Ordonez, L. C.
    IONICS, 2024, : 7237 - 7249
  • [25] A Model for High-Temperature PEM Fuel Cell: The Role of Transport in the Cathode Catalyst Layer
    Shamardina, O.
    Kulikovsky, A. A.
    Chertovich, A. V.
    Khokhlov, A. R.
    FUEL CELLS, 2012, 12 (04) : 577 - 582
  • [26] Optimal pore shape in a low-Pt PEM fuel cell cathode catalyst layer
    Kulikovsky, Andrei
    ELECTROCHEMICAL SCIENCE ADVANCES, 2024, 4 (04):
  • [27] Analysis of Dominant Parameters in Structure and Properties of Cathode Catalyst Layer on PEM Fuel Cell Performance
    Tabe, Y.
    Takamatsu, H.
    Chikahisa, T.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 39 - 47
  • [28] Effect of the pore structure of cathode catalyst layer on the PEM fuel cell cold start process
    Zang, Linfeng
    Hao, Liang
    Zhu, Xiaojing
    ENERGY, 2023, 271
  • [29] Polarization curve of a PEM fuel cell with poor oxygen or proton transport in the cathode catalyst layer
    Kulikovsky, A. A.
    ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) : 1395 - 1399
  • [30] Performance of a PEM fuel cell cathode catalyst layer under oscillating potential and oxygen supply
    Kulikovsky, Andrei
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 159