Exploiting the Hessian matrix for content-based retrieval of volume-data features

被引:3
|
作者
Hladuvka, J [1 ]
Gröller, E [1 ]
机构
[1] Vienna Univ Technol, Inst Comp & Algorithms, A-1040 Vienna, Austria
来源
VISUAL COMPUTER | 2002年 / 18卷 / 04期
关键词
volume visualization; sparse data; gradient; hessian matrix; eigensystem;
D O I
10.1007/s003710100141
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose an algorithm for content-based retrieval of representative subsets of volume data. Our technique is based on thresholding of the eigenvalues of the Hessian matrix. We compare our approach to feature detection based on the gradient magnitude and observe that our method allows the representation of volumes by a smaller amount of voxels. Practical applications of our method include fast volume display due to object-space oriented techniques, generation of preview data sets for web-based repositories, and the related progressive visualization over the network. For these applications, the size of the representative subset can be estimated automatically with respect to the bottleneck of the visualization system or a network bandwidth.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 50 条
  • [1] Exploiting the Hessian matrix for content-based retrieval of volume-data features
    J. Hladůvka
    E. Gröller
    [J]. The Visual Computer, 2002, 18 : 207 - 217
  • [2] Exploiting unlabeled data in content-based image retrieval
    Zhou, ZH
    Chen, KJ
    Jiang, Y
    [J]. MACHINE LEARNING: ECML 2004, PROCEEDINGS, 2004, 3201 : 525 - 536
  • [3] Advancing content-based image retrieval by exploiting image color and region features
    Gong, YH
    [J]. MULTIMEDIA SYSTEMS, 1999, 7 (06) : 449 - 457
  • [4] Advancing content-based image retrieval by exploiting image color and region features
    Yihong Gong
    [J]. Multimedia Systems, 1999, 7 : 449 - 457
  • [5] Features for Content-Based Audio Retrieval
    Mitrovic, Dalibor
    Zeppelzauer, Matthias
    Breiteneder, Christian
    [J]. ADVANCES IN COMPUTERS, VOL 78: IMPROVING THE WEB, 2010, 78 : 71 - 150
  • [6] Exploiting concept clusters for content-based information retrieval
    Kang, BY
    Kim, DW
    Lee, SJ
    [J]. INFORMATION SCIENCES, 2005, 170 (2-4) : 443 - 462
  • [7] Structure features for content-based image retrieval
    Brunner, G
    Burkhardt, H
    [J]. PATTERN RECOGNITION, PROCEEDINGS, 2005, 3663 : 425 - 433
  • [8] Benchmarking of image features for content-based retrieval
    Ma, WY
    Zhang, HJ
    [J]. CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 253 - 257
  • [9] Content-based Video Retrieval with Multi Features
    Lin, Jhih-Long
    Chien, Ou-Yang
    Yu, Han-Yen
    Chen, Jiann-Jone
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS (ICS 2014), 2015, 274 : 1248 - 1257
  • [10] Prosemantic Features for Content-Based Image Retrieval
    Ciocca, Gianluigi
    Cusano, Claudio
    Santini, Simone
    Schettini, Raimondo
    [J]. ADAPTIVE MULTIMEDIA RETRIEVAL: UNDERSTANDING MEDIA AND ADAPTING TO THE USER, 2011, 6535 : 87 - +