Structure features for content-based image retrieval

被引:0
|
作者
Brunner, G [1 ]
Burkhardt, H [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Inst Pattern Recognit & Image Proc, D-79110 Freiburg, Germany
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The geometric structure of an image exhibits fundamental information. Various structure-based feature extraction methods have been developed and successfully applied to image processing problems. In this paper we introduce a geometric structure-based feature generation method, called line-structure recognition (LSR) and apply it to content-based image retrieval. The algorithm is adapted from line segment coherences, which incorporate inter-relational structure knowledge encoded by hierarchical agglomerative clustering, resulting in illumination, scale and rotation robust features. We have conducted comprehensive tests and analyzed the results in detail. The results have been obtained from a subset of 6000 images taken from the Corel image database. Moreover, we compared the performance of LSR with Gabor wavelet features.
引用
收藏
页码:425 / 433
页数:9
相关论文
共 50 条
  • [1] Image Features Optimizing for Content-Based Image Retrieval
    Shi, Zhiping
    Liu, Xi
    He, Qing
    Shi, Zhongzhi
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 260 - 264
  • [2] Benchmarking of image features for content-based retrieval
    Ma, WY
    Zhang, HJ
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 253 - 257
  • [3] Prosemantic Features for Content-Based Image Retrieval
    Ciocca, Gianluigi
    Cusano, Claudio
    Santini, Simone
    Schettini, Raimondo
    ADAPTIVE MULTIMEDIA RETRIEVAL: UNDERSTANDING MEDIA AND ADAPTING TO THE USER, 2011, 6535 : 87 - +
  • [4] Fuzzy aggregation of image features in content-based image retrieval
    Kushki, A
    Androutsos, P
    Plataniotis, KN
    Venetsanopoulos, AN
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 909 - 912
  • [5] Clustering of texture features for content-based image retrieval
    Celebi, E
    Alpkocak, A
    ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1909 : 216 - 225
  • [6] Content-based image retrieval using composite features
    Kauniskangas, H
    Sauvola, J
    Pietikainen, M
    Doermann, D
    SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 35 - 42
  • [7] Statistical shape features for content-based image retrieval
    Brandt, S
    Laaksonen, J
    Oja, E
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2002, 17 (02) : 187 - 198
  • [8] Evaluation of texture features for content-based image retrieval
    Howarth, P
    Rüger, S
    IMAGE AND VIDEO RETRIEVAL, PROCEEDINGS, 2004, 3115 : 326 - 334
  • [9] Content-based image retrieval using multiple features
    Zhang, Chi
    Huang, Lei
    Journal of Computing and Information Technology, 2014, 22 (SpecialIssue) : 1 - 10
  • [10] Content-based image retrieval using texture features
    Honda, MO
    Azevedo-Marques, PM
    Rodrigues, JAH
    CARS 2002: COMPUTER ASSISTED RADIOLOGY AND SURGERY, PROCEEDINGS, 2002, : 1036 - 1036