Neural-network-based system for novel fault detection in rotating machinery

被引:26
|
作者
Crupi, V [1 ]
Guglielmino, E [1 ]
Milazzo, G [1 ]
机构
[1] Univ Messina, Dipartimento Chim Ind & Ingn Mat, I-98166 Messina, Italy
关键词
machinery vibration; fault diagnosis; novelty detection; neural networks;
D O I
10.1177/1077546304043543
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The purpose of this research is the realization of a method for machine health monitoring. The rotating machinery of the Refinery of Milazzo (Italy) was analyzed. A new procedure, incorporating neural networks, was designed and realized to evaluate the vibration signatures and recognize the fault presence. Neural networks have replaced the traditional expert systems, used in the past for the fault diagnosis, because they are a dynamic system and thus adaptable to continuously variable data. The disadvantage of common neural networks is that they need to be trained by real examples of different fault typologies. The innovative aspect of the new procedure is that it allows us to diagnose faults, which are not considered in the training set. This ability was demonstrated by our analysis; the net was able to detect the presence of imbalance and bearing wear, even if these typologies of faults were not present in the training data set.
引用
收藏
页码:1137 / 1150
页数:14
相关论文
共 50 条
  • [1] Convolutional Neural Network Based Fault Detection for Rotating Machinery
    Janssens, Olivier
    Slavkovikj, Viktor
    Vervisch, Bram
    Stockman, Kurt
    Loccufier, Mia
    Verstockt, Steven
    Van de Walle, Rik
    Van Hoecke, Sofie
    [J]. JOURNAL OF SOUND AND VIBRATION, 2016, 377 : 331 - 345
  • [2] Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
    Yan, Jing
    Liu, Tingliang
    Ye, Xinyu
    Jing, Qianzhen
    Dai, Yuannan
    [J]. PLOS ONE, 2021, 16 (08):
  • [3] A Novel Fault Diagnosis Method for Rotating Machinery Based on a Convolutional Neural Network
    Guo, Sheng
    Yang, Tao
    Gao, Wei
    Zhang, Chen
    [J]. SENSORS, 2018, 18 (05)
  • [4] Fault detection of rotating machinery based on wavelet transform and improved deep neural network
    Cui, Mingliang
    Wang, Youqing
    [J]. PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 449 - 454
  • [5] Intelligent fault diagnosis of rotating machinery based on a novel lightweight convolutional neural network
    Lu, Yuqi
    Mi, Jinhua
    Liang, He
    Cheng, Yuhua
    Bai, Libing
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2022, 236 (04) : 554 - 569
  • [6] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    [J]. PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [7] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    [J]. 2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [8] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [9] Study on Fault Diagnosis of Rotating Machinery Based on Wavelet Neural Network
    Xu Yangwen
    [J]. ITCS: 2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, PROCEEDINGS, VOL 2, PROCEEDINGS, 2009, : 221 - 224
  • [10] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    [J]. SHOCK AND VIBRATION, 2022, 2022