Spectral theory of multiplication operators on Hardy-Sobolev spaces

被引:12
|
作者
Cao, Guangfu [1 ]
He, Li [2 ]
Zhu, Kehe [3 ,4 ]
机构
[1] South China Agr Univ, Dept Math, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[3] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[4] Shantou Univ, Dept Math, Shantou, Guangdong, Peoples R China
关键词
Hardy-Sobolev space; Multipliers; Spectrum; Essential spectrum; CARLESON MEASURES; EXCEPTIONAL SETS; MULTIPLIERS;
D O I
10.1016/j.jfa.2018.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a pointwise multiplier phi of the Hardy-Sobolev space H-beta(2) on the open unit ball B-n in C-n, we study spectral properties of the multiplication operator M-phi : H-beta(2) -> H-beta(2) In particular, we compute the spectrum and essential spectrum of M-phi and develop the Fredholm theory for these operators. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1259 / 1279
页数:21
相关论文
共 50 条
  • [1] COMPOSITION OPERATORS ON HARDY-SOBOLEV SPACES
    He, Li
    Cao, Guang Fu
    He, Zhong Hua
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 255 - 267
  • [2] Composition operators on Hardy-Sobolev spaces
    Li He
    Guang Fu Cao
    Zhong Hua He
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 255 - 267
  • [3] Toeplitz operators on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) : 2165 - 2195
  • [4] Hankel operators with pluriharmonic symbols on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1333 - 1361
  • [5] COMPACTNESS OF HANKEL OPERATORS ON HARDY-SOBOLEV SPACES OF THE POLYDISK
    Ahern, Patrick
    Youssfi, El Hassan
    Zhu, Kehe
    [J]. JOURNAL OF OPERATOR THEORY, 2009, 61 (02) : 301 - 312
  • [6] Rough singular integral operators on Hardy-Sobolev spaces
    Chen D.
    Chen J.
    Fan D.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (1) : 1 - 9
  • [7] Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels
    He, Li
    [J]. AIMS MATHEMATICS, 2023, 8 (02): : 2708 - 2719
  • [8] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [9] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133
  • [10] Hardy-Sobolev spaces and their multipliers
    GuangFu Cao
    Li He
    [J]. Science China Mathematics, 2014, 57 : 2361 - 2368