COMPACTNESS OF HANKEL OPERATORS ON HARDY-SOBOLEV SPACES OF THE POLYDISK

被引:0
|
作者
Ahern, Patrick [1 ]
Youssfi, El Hassan [3 ]
Zhu, Kehe [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53705 USA
[2] SUNY Albany, Dept Math, Albany, NY 12222 USA
[3] Univ Aix Marseille 1, CNRS, LATP, CMI,UMR 6632, F-13453 Marseille 13, France
基金
美国国家科学基金会;
关键词
Hankel operators; Hardy spaces; polydisk; DIRICHLET TYPE SPACES; CARLESON MEASURES; MULTIPLIERS; BMO;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a big Hankel operator defined on certain Hardy-Sobolev spaces of the polydisk D-n, n > 1, cannot be compact unless it is the zero operator. This result was obtained by Cotlar and Sadosky in 1993 for the classical Hardy space, but our approach here is much different and our result is more general.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [1] Hankel operators with pluriharmonic symbols on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1333 - 1361
  • [2] COMPACT TOEPLITZ OPERATORS PRODUCTS ON HARDY-SOBOLEV SPACES OVER THE UNIT POLYDISK
    He, Li
    Cao, Guangfu
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (02) : 549 - 570
  • [3] COMPOSITION OPERATORS ON HARDY-SOBOLEV SPACES
    He, Li
    Cao, Guang Fu
    He, Zhong Hua
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (03): : 255 - 267
  • [4] Composition operators on Hardy-Sobolev spaces
    Li He
    Guang Fu Cao
    Zhong Hua He
    [J]. Indian Journal of Pure and Applied Mathematics, 2015, 46 : 255 - 267
  • [5] Toeplitz operators on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (02) : 2165 - 2195
  • [6] Spectral theory of multiplication operators on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    Zhu, Kehe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (05) : 1259 - 1279
  • [7] Rough singular integral operators on Hardy-Sobolev spaces
    Chen D.
    Chen J.
    Fan D.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (1) : 1 - 9
  • [8] Composition operators on Hardy-Sobolev spaces with bounded reproducing kernels
    He, Li
    [J]. AIMS MATHEMATICS, 2023, 8 (02): : 2708 - 2719
  • [9] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [10] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133