Deep Learning Methods for Universal MISO Beamforming

被引:37
|
作者
Kim, Junbeom [1 ]
Lee, Hoon [2 ]
Hong, Seung-Eun [3 ]
Park, Seok-Hwan [1 ]
机构
[1] Jeonbuk Natl Univ, Div Elect Engn, Jeonju 54896, South Korea
[2] Pukyong Natl Univ, Dept Informat & Commun Engn, Busan 48513, South Korea
[3] Elect & Telecommun Res Inst, Future Mobile Commun Res Div, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
Array signal processing; Optimization; Downlink; Training; Deep learning; MISO communication; Neural networks; Multi-user MISO downlink; deep learning; beamforming; interference management; unsupervised learning; OPTIMIZATION;
D O I
10.1109/LWC.2020.3007198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter studies deep learning (DL) approaches to optimize beamforming vectors in downlink multi-user multi-antenna systems that can be universally applied to arbitrarily given transmit power limitation at a base station. We exploit the sum power budget as side information so that deep neural networks (DNNs) can effectively learn the impact of the power constraint in the beamforming optimization. Consequently, a single training process is sufficient for the proposed universal DL approach, whereas conventional methods need to train multiple DNNs for all possible power budget levels. Numerical results demonstrate the effectiveness of the proposed DL methods over existing schemes.
引用
收藏
页码:1894 / 1898
页数:5
相关论文
共 50 条
  • [21] Hybrid Beamforming for mmWave MU-MISO Systems Exploiting Multi-Agent Deep Reinforcement Learning
    Wang, Qisheng
    Li, Xiao
    Jin, Shi
    Chen, Yijian
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (05) : 1046 - 1050
  • [22] Deep Transfer Reinforcement Learning for Beamforming and Resource Allocation in Multi-Cell MISO-OFDMA Systems
    Wang, Xiaoming
    Sun, Gaoxiang
    Xin, Yuanxue
    Liu, Ting
    Xu, Youyun
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2022, 8 : 815 - 829
  • [23] A Learning-Aided Flexible Gradient Descent Approach to MISO Beamforming
    Yang, Zhixiong
    Xia, Jing-Yuan
    Luo, Junshan
    Zhang, Shuanghui
    Gunduz, Deniz
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (09) : 1895 - 1899
  • [24] Statistical CSI-Based Beamforming for RIS-Aided Multiuser MISO Systems via Deep Reinforcement Learning
    Eskandari, Mahdi
    Zhu, Huiling
    Shojaeifard, Arman
    Wang, Jiangzhou
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (02) : 570 - 574
  • [25] User Scheduling Based on Multi-Agent Deep Q-Learning for Robust Beamforming in Multicell MISO Systems
    Braga Jr, Iran M.
    Cavalcante, Eduardo de O.
    Fodor, Gabor
    Silva, Yuri C. B.
    e Silva, Carlos F. M.
    Freitas Jr, Walter C.
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2809 - 2813
  • [26] Deep Learning Based Secure MISO Transmission
    Fulwani, Yash
    Thapar, Shalini
    Sood, Neetu
    [J]. PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [27] A Robust Deep Learning-Based Beamforming Design for RIS-Assisted Multiuser MISO Communications With Practical Constraints
    Xu, Wangyang
    Gan, Lu
    Huang, Chongwen
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) : 694 - 706
  • [28] On the Beamforming Capacity of MISO Channels
    Taricco, Giorgio
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2012, 1 (02) : 141 - 144
  • [29] MISO Radar Beamforming Demonstration
    Stralka, John P.
    Thompson, Richard M.
    Scanlan, Johnathan
    Jones, Aaron
    [J]. 2011 IEEE RADAR CONFERENCE (RADAR), 2011, : 889 - 894
  • [30] DEEP LEARNING FOR FAST ADAPTIVE BEAMFORMING
    Luijten, Ben
    Cohen, Regev
    de Bruijn, Frederik J.
    Schmeitz, Harold A. W.
    Mischi, Massimo
    Eldar, Yonina C.
    van Sloun, Ruud J. G.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1333 - 1337