Broadband and robust adiabatic second-harmonic generation by a temperature gradient in birefringently phase-matched lithium triborate crystal

被引:22
|
作者
Rozenberg, Eyal [1 ]
Arie, Ady [1 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
FREQUENCY-CONVERSION; EFFICIENT; APODIZATION; PULSES; PUMP;
D O I
10.1364/OL.44.003358
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase-matched nonlinear processes exhibit a tradeoff between the conversion efficiency and the acceptance bandwidth. Adiabatic nonlinear processes, in which the phase mismatch varies slowly along the interaction length, enable us to overcome this tradeoff, allowing an efficient frequency conversion with broad spectral and thermal bandwidths. Until now, the variation in the phase mismatch condition was mainly based on quasi-phase matching in ferroelectric crystals. However, this solution is limited to low power sources. Here, instead, we study the adiabatic second harmonic in birefringently phase-matched lithium triborate crystal , enabling us to handle much higher power levels. The variation in the phase mismatch is achieved by inducing a temperature gradient along the crystal. By using a 50 mm long crystal, the adiabatic process provided a temperature bandwidth of 18 degrees C, 5.4 times wider than what is achieved when the same crystal is held at the fixed phase-matching temperature. The conversion efficiency exceeded 60% for a 0.9 millijoule pump pulse. (C) 2019 Optical Society of America
引用
收藏
页码:3358 / 3361
页数:4
相关论文
共 50 条
  • [31] Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal
    Tomita, Isao
    Asobe, Masaki
    Suzuki, Hiroyuki
    Yumoto, Junji
    Yoshikuni, Yuzo
    Journal of Applied Physics, 2006, 100 (02):
  • [32] Broadband quasi-phase-matched second-harmonic generation in a nonlinear photonic crystal
    Tomita, Isao
    Asobe, Masaki
    Suzuki, Hiroyuki
    Yumoto, Junji
    Yoshikuni, Yuzo
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
  • [33] Noncritical phase-matched second-harmonic generation with an organic crystal, 4-(isopropylcarbamoyl)nitrobenzene
    Endoh, H
    Kawaharada, M
    Hasegawa, E
    APPLIED PHYSICS LETTERS, 1996, 68 (03) : 293 - 295
  • [34] Phase-matched second-harmonic generation in a flux grown KTP crystal ridge optical waveguide
    Boutou, Veronique
    Vernay, Augustin
    Felix, Corinne
    Bassignot, Florent
    Chauvet, Mathieu
    Lupinski, Dominique
    Boulanger, Benoit
    OPTICS LETTERS, 2018, 43 (15) : 3770 - 3773
  • [35] Spatial Frequency Manipulation of a Quartz Crystal for Phase-Matched Second-Harmonic Vacuum Ultraviolet Generation
    Shao, Mingchuan
    Liang, Fei
    Zhang, Zhongmian
    Yu, Haohai
    Zhang, Huaijin
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [36] Temperature dependence of angular noncritical phase-matched second-harmonic generation of focused laser radiation
    Bondarenko, A. L.
    Grechin, S. G.
    Kochiev, D. G.
    Sharikov, A. N.
    Shcherbakov, I. A.
    LASER PHYSICS LETTERS, 2018, 15 (02)
  • [37] Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide
    Kowalczyk, T.C.
    Singer, K.D.
    Cahill, P.A.
    Optics Letters, 1995, 20 (22): : 2273 - 2275
  • [38] Phase-Matched Second-Harmonic Generation from Metasurfaces Inside Multipass Cells
    Mekhael, Madona
    Stolt, Timo
    Vesala, Anna
    Rekola, Heikki
    Hakala, Tommi K.
    Fickler, Robert
    Huttunen, Mikko J.
    ACS PHOTONICS, 2024, 11 (02): : 682 - 687
  • [39] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
    Wang, Zijie
    Liu, Bodong
    Wang, Chunhua
    Yu, Huakang
    CHINESE PHYSICS B, 2022, 31 (10)
  • [40] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
    王梓杰
    刘伯东
    王春华
    虞华康
    Chinese Physics B, 2022, 31 (10) : 203 - 208