Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy

被引:4
|
作者
Sanz-Alonso, Daniel [1 ]
Yang, Ruiyi [2 ]
机构
[1] Univ Chicago, Dept Stat Comm Computat & Appl Math, Chicago, IL 60637 USA
[2] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
来源
基金
美国国家科学基金会;
关键词
Mate?rn Gaussian processes; finite elements; Bayesian nonparametrics; LINEAR PREDICTIONS; ASYMPTOTIC OPTIMALITY; CONVERGENCE-RATES; RANDOM-FIELDS;
D O I
10.1137/21M144788X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Mate ' rn GP priors in terms of n finite element basis functions and Gaussian coefficients with a sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size N by setting n N and exploiting sparsity. In this paper we reconsider the standard choice n N through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting n << N in the large N asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the preasymptotic regime.
引用
收藏
页码:1323 / 1349
页数:27
相关论文
共 50 条
  • [21] STATISTICAL ACCURACY OF MEASUREMENTS ON GAUSSIAN RANDOM FRACTALS
    JAKEMAN, E
    JORDAN, DL
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1990, 23 (04) : 397 - 405
  • [22] A Study on Solutions to Finite-Time Optimal Control Problems by Numerical Gaussian Processes
    Beppu, Hirofumi
    Maruta, Ichiro
    Fujitmoto, Kenji
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 399 - 404
  • [23] Finite range decomposition of Gaussian processes
    Brydges, DC
    Guadagni, G
    Mitter, PK
    JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (1-2) : 415 - 449
  • [24] Finite Range Decomposition of Gaussian Processes
    David C. Brydges
    G. Guadagni
    P. K. Mitter
    Journal of Statistical Physics, 2004, 115 : 415 - 449
  • [25] Numerical simulations of hot die forging processes using finite element method
    Tomov, BI
    Gagov, VI
    Radev, RH
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 153 : 352 - 358
  • [26] Numerical simulation of powder compaction processes using an inelastic finite element analysis
    Khoei, AR
    MATERIALS & DESIGN, 2002, 23 (06) : 523 - 529
  • [27] ON TUNING OF FINITE ELEMENT LOAD BALANCING FRAMEWORK
    Bosansky, M.
    Patzak, B.
    ENGINEERING MECHANICS 2019, 2019, 25 : 61 - 64
  • [28] Numerical and experimental validation of a hybrid finite element-statistical energy analysis method
    Cotoni, Vincent
    Shorter, Phil
    Langley, Robin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 122 (01): : 259 - 270
  • [29] Numerical Validation of a Finite Element
    Jiga, Gabriel
    Hadar, Anton
    Pastrama, Stefan
    Constantinescu, Ioan N.
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON VISUALIZATION, IMAGING AND SIMULATION (VIS'08), 2008, : 195 - 200
  • [30] Statistical accuracy of finite element method in predicting horizontal displacement of monopiles for offshore wind turbines
    Lin, Peiyuan
    Ding, Meiyue
    Liu, Haipeng
    Liu, Yuepeng
    Wang, Kai
    MARINE STRUCTURES, 2024, 97