Ultrafast Electrical Measurements of Isolated Silicon Nanowires and Nanocrystals

被引:19
|
作者
Bergren, Matthew R. [1 ,2 ]
Kendrick, Chito E. [1 ,3 ]
Neale, Nathan R. [2 ]
Redwing, Joan M. [3 ]
Collins, Reuben T. [1 ]
Furtak, Thomas E. [1 ]
Beard, Matthew C. [1 ,2 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA
[3] Penn State Univ, Mat Sci & Engn Dept, State Coll, PA 16801 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 12期
基金
美国国家科学基金会;
关键词
TIME-DOMAIN SPECTROSCOPY; CARRIER DYNAMICS; EXCITON POLARIZABILITY; SURFACE RECOMBINATION; QUANTUM CONFINEMENT; GOLD; CONDUCTIVITY; METAL;
D O I
10.1021/jz500863a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We simultaneously determined the charge carrier mobility and picosecond to nanosecond carrier dynamics of isolated silicon nanowires (Si NWs) and nanocrystals (Si NCs) using time-resolved terahertz spectroscopy. We then compared these results to data measured on bulk c-Si as a function of excitation fluence. We find >1 ns carrier lifetimes in Si NA/Vs that are dominated by surface recombination with surface recombination velocities (SRV) between similar to 1100-1700 cm s(-1) depending on process conditions. The Si NCs have markedly different decay dynamics. Initially, free-carriers are produced, but relax within similar to 1.5 ps to form bound excitons. Subsequently, the excitons decay with lifetimes >7 ns, similar to free carriers produced in bulk Si. The isolated Si NWs exhibit bulk-like mobilities that decrease with increasing excitation density, while the hot-carrier mobilities in the Si NCs are lower than bulk mobilities and could only be measured within the initial 1.5 ps decay. We discuss the implications of our measurements on the utilization of Si NWs and NCs in macroscopic optoelectronic applications.
引用
收藏
页码:2050 / 2057
页数:8
相关论文
共 50 条
  • [31] Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties
    Schmidt, Volker
    Wittemann, Joerg V.
    Senz, Stephan
    Goesele, Ulrich
    ADVANCED MATERIALS, 2009, 21 (25-26) : 2681 - 2702
  • [32] Electrical conductivity of ultra-thin silicon nanowires
    Rochdi, Nabil
    Tonneau, Didier
    Jandard, Franck
    Dallaporta, Herve
    Safarov, Viatcheslav
    Gautier, Jacques
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (01): : 159 - 163
  • [33] Morphology and electrical properties of silicon films with vertical nanowires
    Zhanabaev Z.
    Grevtseva T.Yu.
    Ibraimov M.K.
    J. Comput. Theor. Nanosci., 1 (615-618): : 615 - 618
  • [34] The analysis of electrical performances of nanowires silicon solar cells
    HaoFeng Li
    Rui Jia
    WuChang Ding
    Chen Chen
    YanLong Meng
    XinYu Liu
    Science China Technological Sciences, 2011, 54 : 3341 - 3346
  • [35] Multiple exciton generation in isolated and interacting silicon nanocrystals
    Marri, Ivan
    Ossicini, Stefano
    NANOSCALE, 2021, 13 (28) : 12119 - 12142
  • [36] The analysis of electrical performances of nanowires silicon solar cells
    Li HaoFeng
    Jia Rui
    Ding WuChang
    Chen Chen
    Meng YanLong
    Liu XinYu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2011, 54 (12) : 3341 - 3346
  • [38] Fabrication and electrical characterization of silicon nanowires based resistors
    Ni, L.
    Demami, F.
    Rogel, R.
    Salauen, A. C.
    Pichon, L.
    SEMICONDUCTOR NANOSTRUCTURES TOWARDS ELECTRONIC AND OPTOELECTRONIC DEVICE APPLICATIONS II (SYMPOSIUM K, E-MRS 2009 SPRING MEETING), 2009, 6
  • [39] Electrical Transport in Polymer-Covered Silicon Nanowires
    Fobelets, K.
    Ding, P.
    Kiasari, N. Mohseni
    Durrani, Z.
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (04) : 661 - 665
  • [40] Synthesis and Electrical and Mechanical Properties of Silicon and Germanium Nanowires
    Wu, Xueyan
    Kulkarni, Jaideep S.
    Collins, Gillian
    Petkov, Nikolay
    Almecija, Dorothee
    Boland, John J.
    Erts, Donats
    Holmes, Justin D.
    CHEMISTRY OF MATERIALS, 2008, 20 (19) : 5954 - 5967