Early Diagnosis and Prediction of Wafer Quality Using Machine Learning on sub-10nm Logic Technology

被引:0
|
作者
Ko, Heung-Kook [1 ]
Park, Sena [1 ]
Ryu, Jihyun [1 ]
Kim, Sung Ryul [1 ]
Lee, Giwon [1 ]
Lee, Dongjoon [1 ]
Pae, Sangwoo [1 ]
Lee, Euncheol [1 ]
Ji, Yongsun [1 ]
Jiang, Hia [1 ]
Jeong, TaeYoung [1 ]
Uemura, Taiki [1 ]
Kwon, Dongkyun [1 ]
Do, Hyungrok [2 ]
Kahng, Hyungu [2 ]
Cho, Yoon Sang [2 ]
Lee, Jiyoon [2 ]
Kim, Seoung Bum [2 ]
机构
[1] Samsung Elect, Gyeonggi, San 24 Nongseo Dong Giheung Gu, Yongin 446711, Gyeonggi Do, South Korea
[2] Korea Univ, Sch Ind Management Engn, 145 Anam Ro, Seoul 02841, South Korea
关键词
Gradient Boosting; Machine Learning; Mice; Risk Prediction;
D O I
10.1109/irps45951.2020.9128932
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes to use machine learning (ML) methods to predict wafer quality using Fab inline measured items, DC measurements, and DVS (Dynamic Voltage Stress) at wafer sort. With developed ML approach, the predicted accuracy is more than 80% in 8 nm products used in this study. We believe this method can be further fine-tuned to help enable ICs at the high level expected for automotive systems. By assigning predictive rankings, the method also helps enable best tooling system for higher quality
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Rapid Synthesis of Sub-10nm Hexagonal NaYF4-Based Upconverting Nanoparticles using Therminol®66
    Hesse, Julia
    Klier, Dennis T.
    Sgarzi, Massimo
    Nsubuga, Anne
    Bauer, Christoph
    Grenzer, Joerg
    Huebner, Rene
    Wislicenus, Marcus
    Joshi, Tanmaya
    Kumke, Michael U.
    Stephan, Holger
    [J]. CHEMISTRYOPEN, 2018, 7 (02): : 159 - 168
  • [32] Differential diagnosis of pleural mesothelioma using Logic Learning Machine
    Stefano Parodi
    Rosa Filiberti
    Paola Marroni
    Roberta Libener
    Giovanni Paolo Ivaldi
    Michele Mussap
    Enrico Ferrari
    Chiara Manneschi
    Erika Montani
    Marco Muselli
    [J]. BMC Bioinformatics, 16
  • [33] Differential diagnosis of pleural mesothelioma using Logic Learning Machine
    Parodi, Stefano
    Filiberti, Rosa
    Marroni, Paola
    Libener, Roberta
    Ivaldi, Giovanni Paolo
    Mussap, Michele
    Ferrari, Enrico
    Manneschi, Chiara
    Montani, Erika
    Muselli, Marco
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [34] Machine Learning Approaches for Early Diagnosis and Prediction of Fetal Abnormalities
    Chinnaiyan, R.
    Alex, Stalin
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [35] Reliability Prediction for Automotive 5nm and 7nm Technology node by using Machine Learning based Solution
    Lee, Hyung Joo
    Kim, Dongin
    Choi, Sanghyun
    Hong, Seungpyo
    Kwak, Doohwan
    Jayaram, Srividya
    Paek, Seungwon
    Kwon, Minho
    Kim, Yeongdo
    Jung, Hyobe
    Kissiov, Ivan
    Tao, Melody
    Torres, Andres
    Greeneltch, Nathan
    Lee, Ho
    [J]. 2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [36] Sub-10nm 1T-1R Cell Design using HfOx based ReRAM Cell
    Noh, Jinwoo
    Jo, Minseok
    Kang, Chang Yong
    Gilmer, David
    Kirsch, Paul
    Jammy, Raj
    Lee, Jack C.
    Lee, Byoung Hun
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS, AND APPLICATIONS (VLSI-TSA), 2013,
  • [37] Early Quality Classification and Prediction of Battery Cycle Life in Production Using Machine Learning
    Stock, Sandro
    Pohlmann, Sebastian
    Guenter, Florian J.
    Hille, Lucas
    Hagemeister, Jan
    Reinhart, Gunther
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 50
  • [38] Novel IR/EM-Aware Power Grid Design and Analysis Methodologies for Optimal PPA at Sub-10nm Technology Nodes
    Miller, Grant
    Jain, Saurabh
    Kelgeri, Santosh
    Ranganathan, Pranav
    Ceyhan, Ahmet
    [J]. IITC2021: 2021 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE (IITC), 2021,
  • [39] Nanofabrication of high aspect ratio (∼50:1) sub-10nm silicon nanowires using inductively coupled plasma etching
    Mirza, Muhammad M.
    Zhou, Haiping
    Velha, Philippe
    Li, Xu
    Docherty, Kevin E.
    Samarelli, Antonio
    Ternent, Gary
    Paul, Douglas J.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (06):
  • [40] Early Prediction of Cardiogenic Shock Using Machine Learning
    Chang, Yale
    Antonescu, Corneliu
    Ravindranath, Shreyas
    Dong, Junzi
    Lu, Mingyu
    Vicario, Francesco
    Wondrely, Lisa
    Thompson, Pam
    Swearingen, Dennis
    Acharya, Deepak
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9