Mass calibration of the CODEX cluster sample using SPIDERS spectroscopy - I. The richness-mass relation

被引:24
|
作者
Capasso, R. [1 ,2 ]
Mohr, J. J. [1 ,2 ,3 ]
Saro, A. [1 ,2 ,4 ]
Biviano, A. [4 ]
Clerc, N. [3 ,5 ]
Finoguenov, A. [3 ,6 ]
Grandis, S. [1 ,2 ]
Collins, C. [7 ]
Erfanianfar, G. [3 ]
Damsted, S. [6 ]
Kirkpatrick, C. [6 ]
Kukkola, A. [6 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany
[2] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany
[3] Max Planck Inst Extraterr Phys, Giessenbachstr, D-85748 Garching, Germany
[4] INAF Osservatorio Astron Trieste, Via GB Tiepolo 11, I-34143 Trieste, Italy
[5] Univ Toulouse, IRAP, UPS, CNRS,CNES, Toulouse, France
[6] Univ Helsinki, Dept Phys, Gustaf Hallstromin Katu 2a, FI-00014 Helsinki, Finland
[7] Liverpool John Moores Univ, Astrophys Res Inst, IC2,Liverpool Sci Pk,146 Brownlow Hill, Liverpool L3 5RF, Merseyside, England
基金
美国安德鲁·梅隆基金会;
关键词
galaxies: clusters: general; galaxies: evolution; galaxies: kinematics and dynamics; large-scale structure of Universe; DARK-MATTER HALOES; DES YEAR 1; GALAXY CLUSTERS; LUMINOSITY FUNCTION; SCALING RELATIONS; EVOLUTION; COSMOLOGY; PROFILES; CONSTRAINTS; PARAMETERS;
D O I
10.1093/mnras/stz931
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use galaxy dynamical information to calibrate the richness-mass scaling relation of a sample of 428 galaxy clusters that are members of the CODEX sample with redshifts up to z similar to 0.7. These clusters were X-ray selected using the ROSAT All-Sky Survey (RASS) and then cross-matched to associated systems in the redMaPPer (the red sequence Matched-filter Probabilistic Percolation) catalogue from the Sloan Digital Sky Survey. The spectroscopic sample we analyse was obtained in the SPIDERS program and contains similar to 7800 red member galaxies. Adopting NFW mass and galaxy density profiles and a broad range of orbital anisotropy profiles, we use the Jeans equation to calculate halo masses. Modelling the scaling relation as lambda proportional to A(lambda) M-200c(B lambda) (1 + z)()lambda), we find the parameter constraints A(lambda) = 38.6(-4.1)(+3.1) +/- 3.9, B-lambda = 0.99(-0.07)(+0.06) +/- 0.04, and gamma(lambda) = -1.13(-0.34)(+0.32) +/- 0.49, where we present systematic uncertainties as a second component. We find good agreement with previously published mass trends with the exception of those from stacked weak lensing analyses. We note that although the lensing analyses failed to account for the Eddington bias, this is not enough to explain the differences. We suggest that differences in the levels of contamination between pure redMaPPer and RASS + redMaPPer samples could well contribute to these differences. The redshift trend we measure is more negative than but statistically consistent with previous results. We suggest that our measured redshift trend reflects a change in the cluster galaxy red sequence (RS) fraction with redshift, noting that the trend we measure is consistent with but somewhat stronger than an independently measured redshift trend in the RS fraction. We also examine the impact of a plausible model of correlated scatter in X-ray luminosity and optical richness, showing it has negligible impact on our results.
引用
下载
收藏
页码:1594 / 1607
页数:14
相关论文
共 50 条
  • [21] CLUSTER MODEL OF NUCLEAR FISSION .I. ASYMMETRIC MASS DISTRIBUTIONS
    FAISSNER, H
    WILDERMUTH, K
    NUCLEAR PHYSICS, 1964, 58 (02): : 177 - &
  • [22] HICOSMO - cosmology with a complete sample of galaxy clusters - I. Data analysis, sample selection and luminosity-mass scaling relation
    Schellenberger, G.
    Reiprich, T. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (03) : 3738 - 3761
  • [23] Metallicity of M dwarfs -: I.: A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence
    Bonfils, X
    Delfosse, X
    Udry, S
    Santos, NC
    Forveille, T
    Ségransan, D
    ASTRONOMY & ASTROPHYSICS, 2005, 442 (02) : 635 - U28
  • [24] THE LUMINOSITY AND MASS FUNCTIONS OF LOW-MASS STARS IN THE GALACTIC DISK. I. THE CALIBRATION REGION
    Covey, Kevin R.
    Hawley, Suzanne L.
    Bochanski, John J.
    West, Andrew A.
    Reid, I. Neill
    Golimowski, David A.
    Davenport, James R. A.
    Henry, Todd
    Uomoto, Alan
    Holtzman, Jon A.
    ASTRONOMICAL JOURNAL, 2008, 136 (05): : 1778 - 1798
  • [25] The impact of mass loss on star cluster formation - I. Analytical results
    Boily, CM
    Kroupa, P
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 338 (03) : 665 - 672
  • [26] Multiscale cluster lens mass mapping - I. Strong lensing modelling
    Jullo, E.
    Kneib, J. -P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 395 (03) : 1319 - 1332
  • [27] CALIBRATION OF ION SPRAY MASS-SPECTRA USING CLUSTER IONS
    ANACLETO, JF
    PLEASANCE, S
    BOYD, RK
    ORGANIC MASS SPECTROMETRY, 1992, 27 (06): : 660 - 666
  • [28] Galaxy and Mass Assembly (GAMA): Stellar-to-dynamical Mass Relation. I. Constraining the Precision of Stellar Mass Estimates
    Dogruel, M. Burak
    Taylor, Edward N.
    Cluver, Michelle
    D'Eugenio, Francesco
    de Graaff, Anna
    Colless, Matthew
    Sonnenfeld, Alessandro
    ASTROPHYSICAL JOURNAL, 2023, 953 (01):
  • [29] The XXL Survey IV. Mass-temperature relation of the bright cluster sample
    Lieu, M.
    Smith, G. P.
    Giles, P. A.
    Ziparo, F.
    Maughan, B. J.
    Democles, J.
    Pacaud, E.
    Pierre, M.
    Adami, C.
    Bahe, Y. M.
    Clerc, N.
    Chiappetti, L.
    Eckert, D.
    Ettori, S.
    Lavoie, S.
    Le Fevre, J. P.
    McCarthy, I. G.
    Kilbinger, M.
    Ponman, T. J.
    Sadibekova, T.
    Willis, J. P.
    ASTRONOMY & ASTROPHYSICS, 2016, 592
  • [30] Evolution of the Stellar Mass-Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024
    Leethochawalit, Nicha
    Kirby, Evan N.
    Moran, Sean M.
    Ellis, Richard S.
    Treu, Tommaso
    ASTROPHYSICAL JOURNAL, 2018, 856 (01):