Asymptotic behavior of Timoshenko beam with dissipative boundary feedback

被引:23
|
作者
Yan, QY
Hou, SH
Feng, DX [1 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Timoshenko beam; boundary feedback; C-0-semigroups; asymptotic stability; exponential stability;
D O I
10.1016/S0022-247X(02)00036-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the stabilization problem of Timoshenko beam in the presence of linear dissipative boundary feedback controls. Using C-0-semigroups theory we establish the existence and the uniqueness of solution of the proposed closed loop system. In order to consider the asymptotic behavior of the closed loop system, we first discuss the existence of nonzero solution of a closely related boundary value problem, Then we derive various necessary and sufficient conditions for the system to be asymptotically stable. Finally, we prove the equivalence between the exponential stability and the asymptoic stability for the closed loop system. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:556 / 577
页数:22
相关论文
共 50 条
  • [1] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Benaissa, Abbes
    Benazzouz, Sohbi
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [2] Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type
    Abbes Benaissa
    Sohbi Benazzouz
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [3] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    冯德兴
    史东华
    张维弢
    [J]. Science China Mathematics, 1998, (05) : 483 - 490
  • [4] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Feng, DX
    Shi, DH
    Zhang, WT
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (05): : 483 - 490
  • [5] Boundary feedback stabilization of Timoshenko beam with boundary dissipation
    Dexing Feng
    Donghua Shi
    Weitao Zhang
    [J]. Science in China Series A: Mathematics, 1998, 41 : 483 - 490
  • [6] Non-dissipative boundary feedback for Rayleigh and Timoshenko beams
    Guiver, Chris
    Opmeer, Mark R.
    [J]. SYSTEMS & CONTROL LETTERS, 2010, 59 (09) : 578 - 586
  • [7] BOUNDARY FEEDBACK STABILIZATION OF NONUNIFORM TIMOSHENKO BEAM WITH A TIPLOAD
    YAN QINGXU
    [J]. Chinese Annals of Mathematics, 2001, (04) : 485 - 494
  • [8] Numerical Simulation for the Timoshenko Beam Equations with Boundary Feedback
    Wang, Dian-kun
    Li, Fu-le
    [J]. INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT I, 2011, 134 (0I): : 106 - 111
  • [9] Boundary feedback stabilization of nonuniform Timoshenko beam with a tipload
    Yan, QX
    Feng, DX
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (04): : 485 - 494
  • [10] Asymptotic behavior of non-uniform Timoshenko beam acting on shear force with feedback controller
    Aouadi, Moncef
    Boulehmi, Kaouther
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2017, 97 (12): : 1579 - 1599