A noble silver nanoflower on nitrogen doped carbon nanotube for enhanced oxygen reduction reaction

被引:34
|
作者
Yasmin, Sabina [1 ,2 ]
Ahmed, Mohammad Shamsuddin [1 ,2 ]
Jeon, Seungwon [1 ,2 ]
机构
[1] Chonnam Natl Univ, Dept Chem, Gwangju 500757, South Korea
[2] Chonnam Natl Univ, Inst Basic Sci, Gwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
Oxygen reduction reaction; Nitrogen doping; Fuel cell; Silver nanoflowers; Electrochemical deposition; HIGH CATALYTIC-ACTIVITY; ALKALINE FUEL-CELLS; GRAPHENE OXIDE; ELECTROCHEMICAL DEPOSITION; ELECTROCATALYTIC PROPERTY; NANOFIBER ELECTRODES; HYDROGEN EVOLUTION; OXIDATION; PERFORMANCE; MEDIA;
D O I
10.1016/j.ijhydene.2016.09.145
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrodeposition-approach for the synthesis of silver nanoflowers (AgNFs) on nitrogen doped carbon nanotubes (NCNTs) for the oxygen reduction reaction (ORR) in alkaline media has been developed. The as prepared material (NCNTs-AgNFs) has been characterized by various instrumental methods. The morphological analysis shows the unique rose-like AgNFs are placed onto the NCNTs with better dispersion. The higher population of AgNFs has also been observed onto NCNTs coated glassy carbon (GC) rather than bare GC plate. The X-ray photoelectron spectroscopy shows chemical reduction and N-doping has done successfully with the restoring sp(2) domain in carbon network. The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry techniques in 0.1 M KOH electrolyte. The resulting catalyst system, NCNT-AgNFs, surpasses the performance of Pt/C, in terms of a kinetic current density, better fuel selectivity and durability. It is also noteworthy that the NCNT-AgNFs exhibits a four electron reduction pathway for ORR with lowering H2O2 yield. The admirable performance of NCNT-AgNFs catalyst along with higher durability holds great potential for application in various fuel cells as cathode catalyst. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1075 / 1084
页数:10
相关论文
共 50 条
  • [41] Cobalt encapsulated in the nitrogen and sulfur co-doped carbon nanotube supported platinum for the oxygen reduction reaction catalyst
    Kim, Tae-Hyun
    Jung, Chi-Young
    Bose, Ranjith
    Yi, Sung-Chul
    CARBON, 2018, 139 : 656 - 665
  • [42] Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media
    Choi, Chang Hyuck
    Chung, Min Wook
    Kwon, Han Chang
    Chung, Jae Hoon
    Woo, Seong Ihl
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 144 : 760 - 766
  • [43] Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur
    Higgins, Drew C.
    Hoque, Md Ariful
    Hassan, Fathy
    Choi, Ja-Yeon
    Kim, Baejung
    Chen, Zhongwei
    ACS CATALYSIS, 2014, 4 (08): : 2734 - 2740
  • [44] Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
    Gong, Kuanping
    Du, Feng
    Xia, Zhenhai
    Durstock, Michael
    Dai, Liming
    SCIENCE, 2009, 323 (5915) : 760 - 764
  • [45] Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction
    Zhu, Jinliang
    He, Guoqiang
    Liang, Lizhe
    Wan, Quan
    Shen, Pei Kang
    ELECTROCHIMICA ACTA, 2015, 158 : 374 - 382
  • [46] On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons
    Kim, Heejin
    Lee, Kirak
    Woo, Seong Ihl
    Jung, Yousung
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (39) : 17505 - 17510
  • [47] Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction
    Kim, Jaemun
    Noh, Sunguk
    Shim, Jun Ho
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 937
  • [48] Nitrogen-doped Porous Carbon Derived from Chitin with Enhanced Performances for Oxygen Reduction Reaction and Supercapacitor
    Yao, Lei
    Zhong, Wenhua
    Qiu, Lei
    Deng, Libo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (06): : 5798 - 5809
  • [49] Protection Against Absorption Passivation on Platinum by a Nitrogen-Doped Carbon Shell for Enhanced Oxygen Reduction Reaction
    Gao, Yunfei
    Uchiyama, Tomoki
    Yamamoto, Kentaro
    Watanabe, Toshiki
    Thakur, Neha
    Sato, Ryota
    Teranishi, Toshiharu
    Imai, Hideto
    Sakurai, Yoshiharu
    Uchimoto, Yoshiharu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (25) : 30240 - 30248
  • [50] Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction
    Zhang, Shiming
    Chen, Shengli
    JOURNAL OF POWER SOURCES, 2013, 240 : 60 - 65