SVFX: a machine learning framework to quantify the pathogenicity of structural variants

被引:21
|
作者
Kumar, Sushant [1 ,2 ]
Harmanci, Arif [3 ]
Vytheeswaran, Jagath [4 ]
Gerstein, Mark B. [1 ,2 ,5 ]
机构
[1] Yale Univ, Program Computat Biol & Bioinformat, New Haven, CT 06520 USA
[2] Yale Univ, Dept Mol Biophys & Biochem, POB 6666, New Haven, CT 06520 USA
[3] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Ctr Precis Hlth, Houston, TX 77030 USA
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[5] Yale Univ, Dept Comp Sci, 260-266 Whitney Ave,POB 208114, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
IMPACT; SETD3; MUTATIONS;
D O I
10.1186/s13059-020-02178-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There is a lack of approaches for identifying pathogenic genomic structural variants (SVs) although they play a crucial role in many diseases. We present a mechanism-agnostic machine learning-based workflow, called SVFX, to assign pathogenicity scores to somatic and germline SVs. In particular, we generate somatic and germline training models, which include genomic, epigenomic, and conservation-based features, for SV call sets in diseased and healthy individuals. We then apply SVFX to SVs in cancer and other diseases; SVFX achieves high accuracy in identifying pathogenic SVs. Predicted pathogenic SVs in cancer cohorts are enriched among known cancer genes and many cancer-related pathways.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Using Machine Learning to Quantify the Multimedia Risk Due to Fuzzing
    Gautam Siddharth Kashyap
    Karan Malik
    Samar Wazir
    Rijwan Khan
    Multimedia Tools and Applications, 2022, 81 : 36685 - 36698
  • [42] Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants
    Moonjong Kang
    Seonhwa Kim
    Da-Bin Lee
    Changbum Hong
    Kyu-Baek Hwang
    Scientific Reports, 13
  • [43] Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants
    Kang, Moonjong
    Kim, Seonhwa
    Lee, Da-Bin
    Hong, Changbum
    Hwang, Kyu-Baek
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [44] Computational Framework for Machine Fault Diagnosis with Autoencoder Variants
    Verma, Nishchal K.
    Dixit, Sonal
    Sevakula, Rahul K.
    Salour, Al
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 353 - 358
  • [45] An ultrafast and robust structural damage identification framework enabled by an optimized extreme learning machine
    Wang, Xinwei
    Zhao, Yinghao
    Wang, Zhihao
    Hu, Nan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 216
  • [46] A general framework of high-performance machine learning algorithms: application in structural mechanics
    Markou, George
    Bakas, Nikolaos P.
    Chatzichristofis, Savvas A.
    Papadrakakis, Manolis
    COMPUTATIONAL MECHANICS, 2024, 73 (04) : 705 - 729
  • [47] A framework for developing a machine learning-based finite element model for structural analysis
    Li, Gang
    Luo, Rui
    Yu, Ding-Hao
    Computers and Structures, 2025, 307
  • [48] A general framework of high-performance machine learning algorithms: application in structural mechanics
    George Markou
    Nikolaos P. Bakas
    Savvas A. Chatzichristofis
    Manolis Papadrakakis
    Computational Mechanics, 2024, 73 : 705 - 729
  • [49] A framework for fast estimation of structural seismic responses using ensemble machine learning model
    Li, Chunxiang
    Li, Hai
    Chen, Xu
    SMART STRUCTURES AND SYSTEMS, 2021, 28 (03) : 425 - 441
  • [50] Machine Learning for Structural Materials
    Sparks, Taylor D.
    Kauwe, Steven K.
    Parry, Marcus E.
    Tehrani, Aria Mansouri
    Brgoch, Jakoah
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 27 - 48