Nonignorable missingness in matched case-control data analyses
被引:10
|
作者:
Paik, MC
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USAColumbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
Paik, MC
[1
]
机构:
[1] Columbia Univ, Mailman Sch Publ Hlth, Dept Biostat, New York, NY 10032 USA
Matched case-control data analysis is often challenged by a missing covariate problem, the mishandling of which could cause bias or inefficiency. Satten and Carroll (2000, Biometrics 56, 384-388) and other authors have proposed methods to handle missing covariates when the probability of missingness depends on the observed data, i.e., when data are missing at random. In this article, we propose a conditional likelihood method to handle the case when the probability of missingness depends on the unobserved covariate, i.e., when data are nonignorably missing. When the missing covariate is binary, the proposed method can be implemented using standard software. Using the Northern. Manhattan Stroke Study data, we illustrate the method and discuss how sensitivity analysis can be conducted.
机构:
Karolinska Inst, Dept Med Epidemiol & Biostat, Box 281, SE-17177 Stockholm, SwedenKarolinska Inst, Dept Med Epidemiol & Biostat, Box 281, SE-17177 Stockholm, Sweden
Delcoigne, Benedicte
Stoer, Nathalie C.
论文数: 0引用数: 0
h-index: 0
机构:
Oslo Univ Hosp, Natl Advisory Unit Womens Hlth, Oslo, NorwayKarolinska Inst, Dept Med Epidemiol & Biostat, Box 281, SE-17177 Stockholm, Sweden
Stoer, Nathalie C.
Reilly, Marie
论文数: 0引用数: 0
h-index: 0
机构:
Karolinska Inst, Dept Med Epidemiol & Biostat, Box 281, SE-17177 Stockholm, SwedenKarolinska Inst, Dept Med Epidemiol & Biostat, Box 281, SE-17177 Stockholm, Sweden