Universality of quantum Turing machines with deterministic control

被引:5
|
作者
Mateus, P. [1 ]
Sernadas, A.
Souto, A.
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Matemat, P-1699 Lisbon, Portugal
关键词
Quantum computation; computational complexity; quantum Kolmogorov complexity; COMPLEXITY;
D O I
10.1093/logcom/exv008
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Asimple notion of quantum Turing machine with deterministic, classical control is proposed and shown to be powerful enough to compute any unitary transformation that is computable by a finitely generated quantum circuit. Anefficient universal machine with the s-m-n property is presented. The BQPclass is recovered. Arobust notion of plain Kolmogorov complexity of quantum states is proposed and compared with those previously reported in the literature.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] UNBOUNDED HARDWARE IS EQUIVALENT TO DETERMINISTIC TURING-MACHINES
    CHAZELLE, B
    MONIER, L
    THEORETICAL COMPUTER SCIENCE, 1983, 24 (02) : 123 - 130
  • [22] A LOCAL MODEL OF QUANTUM TURING MACHINES
    Wang, Dong-Sheng
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (3-4) : 213 - 229
  • [23] Quantum Turing Machines: Computations and Measurements
    Guerrini, Stefano
    Martini, Simone
    Masini, Andrea
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [24] Pattern formation in quantum Turing machines
    Kim, I
    Mahler, G
    PHYSICAL REVIEW A, 1999, 60 (01): : 692 - 695
  • [25] A local model of quantum turing machines
    Wang, Dong-Sheng
    Quantum Information and Computation, 2020, 20 (3-4): : 213 - 229
  • [26] Revisiting the simulation of quantum Turing machines by quantum circuits
    Molina, Abel
    Watrous, John
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2226):
  • [27] Deterministic One-Way Turing Machines with Sublinear Space
    Kutrib, Martin
    Provillard, Julien
    Vaszil, Gyoergy
    Wendlandt, Matthias
    FUNDAMENTA INFORMATICAE, 2015, 136 (1-2) : 139 - 155
  • [28] Tight binding Hamiltonians and quantum turing machines
    Benioff, P
    PHYSICAL REVIEW LETTERS, 1997, 78 (04) : 590 - 593
  • [29] Turing machines based on unsharp quantum logic *
    Shang, Yun
    Lu, Xian
    Lu, Ruqian
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (95): : 251 - 261
  • [30] Local transition functions of quantum Turing machines
    Ozawa, M
    Nishimura, H
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 2000, 34 (05): : 379 - 402