The undirected feedback vertex set problem has a poly(k) kernel

被引:0
|
作者
Burrage, Kevin [1 ]
Estivill-Castro, Vladimir
Fellows, Michael
Langston, Michael
Mac, Shev
Rosamond, Frances
机构
[1] Univ Queensland, Dept Math, Brisbane, Qld 4072, Australia
[2] Griffith Univ, Brisbane, Qld 4111, Australia
[3] Univ Newcastle, Sch EE & CS, Newcastle, NSW 2308, Australia
[4] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[6] Retreat Arts & Sci, Newcastle, NSW, Australia
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Resolving a noted open problem, we show that the UNDIRECTED FEEDBACK VERTEX SET problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' <= k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k(11)) kernelization bound.
引用
收藏
页码:192 / 202
页数:11
相关论文
共 50 条
  • [21] Faster fixed parameter tractable algorithms for undirected feedback vertex set
    Raman, V
    Saurabh, S
    Subramanian, CR
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 241 - 248
  • [22] A 13k-kernel for planar feedback vertex set via region decomposition
    Bonamy, Marthe
    Kowalik, Lukasz
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 645 : 25 - 40
  • [23] A 14k-Kernel for Planar Feedback Vertex Set via Region Decomposition
    Bonamy, Marthe
    Kowalik, Lukasz
    [J]. PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 97 - 109
  • [24] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Eva-Maria C. Hols
    Stefan Kratsch
    [J]. Theory of Computing Systems, 2018, 62 : 63 - 92
  • [25] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Bergougnoux, Benjamin
    Eiben, Eduard
    Ganian, Robert
    Ordyniak, Sebastian
    Ramanujan, M. S.
    [J]. ALGORITHMICA, 2021, 83 (05) : 1201 - 1221
  • [26] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Hans L. Bodlaender
    Thomas C. van Dijk
    [J]. Theory of Computing Systems, 2010, 46 : 566 - 597
  • [27] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    [J]. 33RD SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2016), 2016, 47
  • [28] Towards a Polynomial Kernel for Directed Feedback Vertex Set
    Benjamin Bergougnoux
    Eduard Eiben
    Robert Ganian
    Sebastian Ordyniak
    M. S. Ramanujan
    [J]. Algorithmica, 2021, 83 : 1201 - 1221
  • [29] A Cubic Kernel for Feedback Vertex Set and Loop Cutset
    Bodlaender, Hans L.
    van Dijk, Thomas C.
    [J]. THEORY OF COMPUTING SYSTEMS, 2010, 46 (03) : 566 - 597
  • [30] A Randomized Polynomial Kernel for Subset Feedback Vertex Set
    Hols, Eva-Maria C.
    Kratsch, Stefan
    [J]. THEORY OF COMPUTING SYSTEMS, 2018, 62 (01) : 63 - 92