Unified approach for regression models with nonmonotone missing at random data

被引:4
|
作者
Zhao, Yang [1 ]
Liu, Meng [2 ]
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Xiamen Golden Strait Investment Co LTD, Dept Informat Technol, Xiamen, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Inverse probability weighting; Nonmonotone missing at random data; Working regression models; PARTIAL QUESTIONNAIRE DESIGN; MULTIPLE IMPUTATION; INFERENCE;
D O I
10.1007/s10182-020-00389-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Unified approach (Chen and Chen in J R Stat Soc B 62(3):449-460, 2000) uses a working regression model to extract information from auxiliary variables in two-stage study for computing an efficient estimator of regression parameter. As far as we know, the method is limited to deal with missing complete at random data in a simple monotone missing data pattern. In this research, we extend the unified approach to estimate regression models with nonmonotone missing at random data. We describe an inverse probability weighting estimator condition on estimators from a set of working regression models which contains information from incomplete data and auxiliary variables. The proposed method is flexible and can easily accommodate incomplete data and auxiliary variables. We investigate the finite-sample performance of the proposed estimators using simulation studies and further illustrate the estimation method on a case-control study investigating the risk factors of hip fractures.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 50 条
  • [21] Efficiency transfer for regression models with responses missing at random
    Mueller, Ursula U.
    Schick, Anton
    BERNOULLI, 2017, 23 (4A) : 2693 - 2719
  • [22] Regularized approach for data missing not at random
    Tseng, Chi-hong
    Chen, Yi-Hau
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (01) : 134 - 150
  • [23] A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models
    Assmann, Christian
    Gaasch, Jean-Christoph
    Stingl, Doris
    PSYCHOMETRIKA, 2023, 88 (04) : 1495 - 1528
  • [24] A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models
    Christian Aßmann
    Jean-Christoph Gaasch
    Doris Stingl
    Psychometrika, 2023, 88 : 1495 - 1528
  • [25] Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model
    Malinsky, Daniel
    Shpitser, Ilya
    Tchetgen, Eric J. Tchetgen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1415 - 1423
  • [26] A unified maximum likelihood approach for analyzing structural equation models with missing nonstandard data
    Lee, Sik-Yum
    Song, Xin-Yuan
    SOCIOLOGICAL METHODS & RESEARCH, 2007, 35 (03) : 352 - 381
  • [27] VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    STATISTICA SINICA, 2010, 20 (01) : 149 - 165
  • [28] Missing Data and Regression Models for Spatial Images
    Zhang, Jun
    Clayton, Murray K.
    Townsend, Philip A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (03): : 1574 - 1582
  • [29] A revisit of semiparametric regression models with missing data
    Yu, Menggang
    Nan, Bin
    STATISTICA SINICA, 2006, 16 (04) : 1193 - 1212
  • [30] Block-Conditional Missing at Random Models for Missing Data
    Zhou, Yan
    Little, Roderick J. A.
    Kalbfleisch, John D.
    STATISTICAL SCIENCE, 2010, 25 (04) : 517 - 532