Deterministic algorithms for 2-d convex programming and 3-d online linear programming

被引:0
|
作者
Chan, TM
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a deterministic algorithm for solving two-dimensional convex programs with a linear objective function. The algorithm requires O(k log k) primitive operations for k constraints; if a feasible point is given, the bound reduces to O(k log k/log log k). As a consequence, we can decide whether k convex n-gons in the plane have a common intersection in O(k log n min{log k, log log n}) worst-case time. Furthermore, we can solve the three-dimensional online linear programming problem in o(log(3) n) worst-case time per operation.
引用
收藏
页码:464 / 472
页数:9
相关论文
共 50 条
  • [31] A Dynamic Data Structure for 3-d Convex Hulls and 2-d Nearest Neighbor Queries
    Chan, Timothy M.
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 1196 - 1202
  • [32] A Dynamic Data Structure for 3-D Convex Hulls and 2-D Nearest Neighbor Queries
    Chan, Timothy M.
    JOURNAL OF THE ACM, 2010, 57 (03)
  • [33] IMPLEMENTATION OF SUCCESSIVE LINEAR-PROGRAMMING ALGORITHMS FOR NON-CONVEX GOAL PROGRAMMING
    ARMSTRONG, R
    CHARNES, A
    HAKSEVER, C
    COMPUTERS & OPERATIONS RESEARCH, 1988, 15 (01) : 37 - 49
  • [34] Comparison of 1-D, 2-D and 3-D printer calibration algorithms with printer draft
    Gurram, PK
    Dianat, SA
    Mestha, LK
    Bala, R
    IS&T'S NIP21: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, FINAL PROGRAM AND PROCEEDINGS, 2005, : 505 - 510
  • [35] Fusion of autoradiographies with an MR volume using 2-D and 3-D linear transformations
    Malandain, G
    Bardinet, E
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 487 - 498
  • [36] 2-D MR Spectroscopy Combined with 2-D/3-D Spatial Encoding
    Thomas, M. Albert
    Iqbal, Zohaib
    Sarma, Manoj K.
    Nagarajan, Rajakumar
    Macey, Paul M.
    Huda, Amir
    EMAGRES, 2016, 5 (01): : 1039 - 1060
  • [37] Fusion of autoradiographs with an MR volume using 2-D and 3-D linear transformations
    Malandain, G
    Bardinet, E
    Nelissen, K
    Vanduffel, W
    NEUROIMAGE, 2004, 23 (01) : 111 - 127
  • [38] 3-D measurement of 2-D jet by 3-D 3-C SPIV
    Ninomiya, Nao
    Tanaka, Yukihisa
    Sotome, Satoshi
    Eda, Masahide
    Watanabe, Atsushi
    JOURNAL OF VISUALIZATION, 2019, 22 (02) : 305 - 312
  • [39] 3-D measurement of 2-D jet by 3-D 3-C SPIV
    Nao Ninomiya
    Yukihisa Tanaka
    Satoshi Sotome
    Masahide Eda
    Atsushi Watanabe
    Journal of Visualization, 2019, 22 : 305 - 312
  • [40] Assembling 2-D Blocks into 3-D Chips
    Knechtel, Johann
    Markov, Igor L.
    Lienig, Jens
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (02) : 228 - 241