Some new perturbation bounds of generalized polar decomposition

被引:5
|
作者
Hong, Xiaoli [1 ]
Meng, Lingsheng [1 ]
Zheng, Bing [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Perturbation bounds; Positive semidefinite polar factor; Subunitary polar factor; Generalized polar decomposition; Weighted polar decomposition; Unitarily invariant norm; Spectral norm; MATRICES; UNITARY;
D O I
10.1016/j.amc.2014.02.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new perturbation bounds of the positive (semi) definite polar factor and the (sub) unitary polar factor for the (generalized) polar decomposition under the general unitarily invariant norm and the spectral norm are presented. By applying our new bounds to the weighted cases, the known perturbation bounds for the weighted polar decomposition are improved. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 438
页数:9
相关论文
共 50 条
  • [21] NEW PERTURBATION BOUNDS FOR NONNEGATIVE AND POSITIVE POLAR FACTORS
    Li, Hanyu
    Yang, Hu
    Shao, Hua
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 349 - 362
  • [22] PERTURBATION BOUNDS FOR THE POLAR FACTORS
    CHEN, CH
    SUN, JG
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (04) : 397 - 401
  • [23] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Li, Wen
    Chen, Yanmei
    Vong, Seakweng
    Luo, Qilun
    [J]. NUMERICAL ALGORITHMS, 2018, 79 (02) : 657 - 677
  • [24] Some refined bounds for the perturbation of the orthogonal projection and the generalized inverse
    Wen Li
    Yanmei Chen
    Seakweng Vong
    Qilun Luo
    [J]. Numerical Algorithms, 2018, 79 : 657 - 677
  • [25] New rigorous perturbation bounds for the generalized Cholesky factorization
    Li, Hanyu
    Yang, Yanfei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 668 - 675
  • [26] An optimal perturbation bound for the partial isometry associated to the generalized polar decomposition
    Fu, Chunhong
    Xu, Qingxiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 372 (372)
  • [27] On Perturbation bounds for HR decomposition
    Lu, Linzhang
    Lai, Jiangzhou
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 150 - 151
  • [28] Perturbation bounds of generalized inverses
    Meng, Lingsheng
    Zheng, Bing
    Ma, Peilan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 296 : 88 - 100
  • [29] Combined perturbation bounds:Ⅱ.Polar decompositions
    Wen LI~(1+) Wei-wei SUN~2 1 School of Mathematical Sciences
    2 Department of Mathematics
    [J]. Science China Mathematics, 2007, (09) : 1339 - 1346
  • [30] New perturbation bounds of partitioned generalized Hermitian eigenvalue problem
    Xiao, Chuanfu
    Li, Hanyu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 422 - 430