On minimal Legendrian submanifolds of Sasaki-Einstein manifolds

被引:1
|
作者
Calamai, Simone [1 ]
Petrecca, David [2 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat Ulisse Dini, Florence, Italy
[2] Univ Pisa, Dipartimento Matemat, Pisa, Italy
关键词
Sasaki-Einstein manifold; Legendrian submanifolds; minimal submanifolds; totally geodesic submanifolds; Laplacian eigenfunctions; contact moment map; Nomizu operator;
D O I
10.1142/S0129167X14500839
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given minimal Legendrian submanifold L of a Sasaki-Einstein manifold we construct two families of eigenfunctions of the Laplacian of L and we give a lower bound for the dimension of the corresponding eigenspace. Moreover, in the case the lower bound is attained, we prove that L is totally geodesic and a rigidity result about the ambient manifold. This is a generalization of a result for the standard Sasakian sphere done by Le and Wang.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] From β to η: a new cohomology for deformed Sasaki-Einstein manifolds
    Tasker, Edward Lodoen
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
  • [22] Reduction of type IIB on squashed Sasaki-Einstein manifolds
    Cassani, D.
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2011, 216 : 221 - 222
  • [23] Sasaki-Einstein metrics on a class of 7-manifolds
    Boyer, Charles P.
    Tonnesen-Friedman, Christina W.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 140 : 111 - 124
  • [24] Type IIB supergravity on squashed Sasaki-Einstein manifolds
    Cassani, Davide
    Dall'Agata, Gianguido
    Faedo, Anton F.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [25] Type IIB supergravity on squashed Sasaki-Einstein manifolds
    Davide Cassani
    Gianguido Dall’Agata
    Anton F. Faedo
    [J]. Journal of High Energy Physics, 2010
  • [26] Scalar Laplacian on Sasaki-Einstein manifolds Yp,q
    Kihara, H
    Sakaguchi, M
    Yasui, Y
    [J]. PHYSICS LETTERS B, 2005, 621 (3-4) : 288 - 294
  • [27] Superconformal indices, Sasaki-Einstein manifolds, and cyclic homologies
    Eager, Richard
    Schmude, Johannes
    Tachikawa, Yuji
    [J]. ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (01) : 129 - 175
  • [28] Semi-classical strings in Sasaki-Einstein manifolds
    Giataganas, Dimitrios
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [29] The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (01) : 39 - 65
  • [30] Second variation and Legendrian stabilities of minimal Legendrian submanifolds in Sasakian manifolds
    Ono, H
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (03) : 327 - 340