Primal and dual convergence of a proximal point exponential penalty method for linear programming

被引:17
|
作者
Alvarez, F
Cominetti, R
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
关键词
proximal point; exponential penalty; linear programming;
D O I
10.1007/s10107-002-0295-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the diagonal inexact proximal point iteration u(k) - u(k-1)/lambda(k) is an element of - partial derivative(epsilonk)f(u(k), r(k)) + v(k) where f(x, r) = c(T)x + rSigmaexp[(A(i)x - b(i))/r] is the exponential penalty approximation of the linear program min{c(T)x : Ax less than or equal to b}. We prove that under an appropriate choice of the sequences lambda(k), epsilon(k) and with some control on the residual v(k), for every r(k) --> 0(+) the sequence u(k) converges towards an optimal point u(infinity) of the linear program. We also study the convergence of the associated dual sequence mu(i)(k) = exp[(A(i)u(k) - b(i))/r(k)] towards a dual optimal solution.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [41] A PRIMAL DUAL INFEASIBLE-INTERIOR-POINT ALGORITHM FOR LINEAR-PROGRAMMING
    KOJIMA, M
    MEGIDDO, N
    MIZUNO, S
    [J]. MATHEMATICAL PROGRAMMING, 1993, 61 (03) : 263 - 280
  • [42] Dual Convergence for Penalty Algorithms in Convex Programming
    Alvarez, Felipe
    Carrasco, Miguel
    Champion, Thierry
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (02) : 388 - 407
  • [43] A primal-dual method for linear programming problems with fuzzy variables
    Ebrahimnejad, A.
    Nasseri, S. H.
    Lotfi, F. Hosseinzadeh
    Soltanifar, M.
    [J]. EUROPEAN JOURNAL OF INDUSTRIAL ENGINEERING, 2010, 4 (02) : 189 - 209
  • [44] A DUAL INTERIOR PRIMAL SIMPLEX-METHOD FOR LINEAR-PROGRAMMING
    TAMURA, A
    TAKEHARA, H
    FUKUDA, K
    FUJISHIGE, S
    KOJIMA, M
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1988, 31 (03) : 413 - 430
  • [45] Primal-dual Newton method for a linear problem of semidefinite programming
    Zhadan, V. G.
    Orlov, A. A.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02): : 157 - 169
  • [46] Dual versus primal-dual interior-point methods for linear and conic programming
    M. J. Todd
    [J]. Mathematical Programming, 2008, 111 : 301 - 313
  • [47] Dual versus primal-dual interior-point methods for linear and conic programming
    Todd, M. J.
    [J]. MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) : 301 - 313
  • [48] A penalty method for linear programming
    Menniche, Linda
    Benterki, Djamel
    Merikhi, Bachir
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (03): : 677 - 685
  • [49] Certificates of Primal or Dual Infeasibility in Linear Programming
    Erling D. Andersen
    [J]. Computational Optimization and Applications, 2001, 20 : 171 - 183
  • [50] A COMPARISON OF PRIMAL AND DUAL METHODS OF LINEAR PROGRAMMING
    KLEE, V
    [J]. NUMERISCHE MATHEMATIK, 1966, 9 (03) : 227 - &