Privacy-Preserving Dual Averaging With Arbitrary Initial Conditions for Distributed Optimization

被引:0
|
作者
Han, Dongyu [1 ]
Liu, Kun [1 ]
Sandberg, Henrik [2 ]
Chai, Senchun [1 ]
Xia, Yuanqing [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Div Decis & Control Syst, S-10044 Stockholm, Sweden
基金
瑞典研究理事会; 中国国家自然科学基金;
关键词
Privacy; Optimization; Convergence; Perturbation methods; Probability density function; Heuristic algorithms; Cost function; Distributed optimization; dual averaging algorithm; multiagent network; privacy preservation; CONVEX-OPTIMIZATION; ALGORITHM;
D O I
10.1109/TAC.2021.3097295
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article considers a privacy-concerned distributed optimization problem over multiagent networks, in which malicious agents exist and try to infer the privacy information of the normal ones. We propose a novel dual averaging algorithm which involves the use of a correlated perturbation mechanism to preserve the privacy of the normal agents. It is shown that our algorithm achieves deterministic convergence under arbitrary initial conditions and the privacy preservation is guaranteed. Moreover, a probability density function of the perturbation is given to maximize the degree of privacy measured by the trace of the Fisher information matrix. Finally, a numerical example is provided to illustrate the effectiveness of our algorithm.
引用
收藏
页码:3172 / 3179
页数:8
相关论文
共 50 条
  • [21] Privacy-Preserving Distributed Optimization via Subspace Perturbation: A General Framework
    Li, Qiongxiu
    Heusdens, Richard
    Christensen, Mads Graesboll
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5983 - 5996
  • [22] Towards privacy-preserving cooperative control via encrypted distributed optimization
    Binfet, Philipp
    Adamek, Janis
    Schlueter, Nils
    Darup, Moritz Schulze
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2023, 71 (09) : 736 - 747
  • [23] Privacy-Preserving Distributed Deep Learning with Privacy Transformations
    Cheung, Sen-ching S.
    Rafique, Muhammad Usman
    Tan, Wai-tian
    [J]. 2018 10TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2018,
  • [24] Privacy-Preserving Distributed Coordination of Distributed Energy Resources
    Zholbaryssov, Madi
    Hadjicostis, Christoforos N.
    Dominguez-Garcia, Alejandro D.
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 4689 - 4696
  • [25] zkLedger: Privacy-Preserving Auditing for Distributed Ledgers
    Narula, Neha
    Vasquez, Willy
    Virza, Madars
    [J]. PROCEEDINGS OF THE 15TH USENIX SYMPOSIUM ON NETWORKED SYSTEMS DESIGN AND IMPLEMENTATION (NSDI'18), 2018, : 65 - 80
  • [26] Privacy-preserving image retrieval in a distributed environment
    Zhou, Fucai
    Qin, Shiyue
    Hou, Ruitao
    Zhang, Zongye
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (10) : 7478 - 7501
  • [27] Privacy-preserving harmonization via distributed ComBat
    Chen, Andrew A.
    Luo, Chongliang
    Chen, Yong
    Shinohara, Russell T.
    Shou, Haochang
    [J]. NEUROIMAGE, 2022, 248
  • [28] Privacy-preserving ridge regression on distributed data
    Chen, Yi-Ruei
    Rezapour, Amir
    Tzeng, Wen-Guey
    [J]. INFORMATION SCIENCES, 2018, 451 : 34 - 49
  • [29] Privacy-preserving Triangle Counting in Distributed Graphs
    Do, Hoang Giang
    Ng, Wee Keong
    [J]. IEEE 30TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS IEEE AINA 2016, 2016, : 917 - 924
  • [30] Distributed Privacy-Preserving Minimal Distance Classification
    Krawczyk, Bartosz
    Wozniak, Michal
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 462 - 471