Comparison of Machine Learning Methods to Automatically Classify Keratoconus

被引:0
|
作者
Hidalgo, Irene Ruiz [1 ,2 ]
Rodriguez Perez, Pablo [3 ,4 ]
Rozema, Jos J. [1 ,2 ]
Tassignon, Marie-Jose B. R. [1 ,2 ]
机构
[1] Antwerp Univ Hosp, Ophthalmol, Edegem, Belgium
[2] Univ Antwerp, Med, Antwerp, Belgium
[3] CSIC, ICMA, Zaragoza, Spain
[4] Univ Zaragoza, Fac Sci, Zaragoza, Spain
关键词
574; keratoconus; 465 clinical (human) or epidemiologic studies: systems/equipment/techniques; 496; detection;
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
4206
引用
收藏
页数:3
相关论文
共 50 条
  • [21] A comparison of machine learning methods to classify radioactive elements using prompt-gamma-ray neutron activation data
    Mathew, Jino
    Kshirsagar, Rohit
    Abidin, Dzariff Z.
    Griffin, James
    Kanarachos, Stratis
    James, Jithin
    Alamaniotis, Miltiadis
    Fitzpatrick, Michael E.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] MACHINE LEARNING METHODS IN THE DIFFERENTIAL DIAGNOSIS OF DIFFICULT-TO-CLASSIFY TYPES OF DIABETES MELLITUS
    Rusyaeva, Nadezhda V.
    Golodnikov, Ivan I.
    Kononenko, Irina V.
    Nikonova, Tatiana V.
    Shestakova, Marina V.
    [J]. DIABETES MELLITUS, 2023, 26 (05): : 473 - 483
  • [23] Comparison of machine learning methods for crack localization
    Hein, Helle
    Jaanuska, Ljubov
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 125 - 142
  • [24] Using Machine Learning to Classify Test Outcomes
    Roper, Marc
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING (AITEST), 2019, : 99 - 100
  • [25] Comparison of Artificial Intelligence-Based Machine Learning Classifiers for Early Detection of Keratoconus
    Mohammadpour, Mehrdad
    Heidari, Zahra
    Hashemi, Hassan
    Yaseri, Mehdi
    Fotouhi, Akbar
    [J]. EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2022, 32 (03) : 1352 - 1360
  • [26] Using Machine Learning to Monitor Keratoconus Progression
    Ahuja, Abhimanyu S.
    Halperin, Lawrence S.
    [J]. JAMA OPHTHALMOLOGY, 2019, 137 (12) : 1467 - 1468
  • [27] TeslaML: Steering Machine Learning Automatically in Tencent
    Jiang, Jiawei
    Huang, Ming
    Jiang, Jie
    Cui, Bin
    [J]. WEB AND BIG DATA, APWEB-WAIM 2017, PT II, 2017, 10367 : 313 - 318
  • [28] Automatically Evaluating Balance: A Machine Learning Approach
    Bao, Tian
    Klatt, Brooke N.
    Whitney, Susan L.
    Sienko, Kathleen H.
    Wiens, Jenna
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (02) : 179 - 186
  • [29] A DEEP LEARNING APPROACH TO AUTOMATICALLY CLASSIFY PATHOLOGICAL CELL IMAGES IN PERIPHERAL BLOOD
    Alferez, Santiago
    Merino, Anna
    Boldu, Laura
    Acevedo, Andrea
    Molina, Angel
    Rodellar, Jose
    [J]. INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 : 9 - 9
  • [30] Comparison of machine learning methods for intelligent tutoring systems
    Hamalainen, Wilhelmiina
    Vinni, Mikko
    [J]. INTELLIGENT TUTORING SYSTEMS, PROCEEDINGS, 2006, 4053 : 525 - 534