Comparison of Machine Learning Methods to Automatically Classify Keratoconus

被引:0
|
作者
Hidalgo, Irene Ruiz [1 ,2 ]
Rodriguez Perez, Pablo [3 ,4 ]
Rozema, Jos J. [1 ,2 ]
Tassignon, Marie-Jose B. R. [1 ,2 ]
机构
[1] Antwerp Univ Hosp, Ophthalmol, Edegem, Belgium
[2] Univ Antwerp, Med, Antwerp, Belgium
[3] CSIC, ICMA, Zaragoza, Spain
[4] Univ Zaragoza, Fac Sci, Zaragoza, Spain
关键词
574; keratoconus; 465 clinical (human) or epidemiologic studies: systems/equipment/techniques; 496; detection;
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
4206
引用
收藏
页数:3
相关论文
共 50 条
  • [1] On using machine learning to automatically classify software applications into domain categories
    Mario Linares-Vásquez
    Collin McMillan
    Denys Poshyvanyk
    Mark Grechanik
    [J]. Empirical Software Engineering, 2014, 19 : 582 - 618
  • [2] On using machine learning to automatically classify software applications into domain categories
    Linares-Vasquez, Mario
    McMillan, Collin
    Poshyvanyk, Denys
    Grechanik, Mark
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2014, 19 (03) : 582 - 618
  • [3] A Machine Learning Pipeline to Automatically Identify and Classify Roadway Surface Disruptions
    Aragon, M. Ezra
    Ricardo Carlos, M.
    Gonzalez Gurrola, Luis C.
    Jair Escalante, Hugo
    [J]. ENC'16: PROCEEDINGS OF THE SIXTEENTH MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE, 2015,
  • [4] Automatically Classify Chinese Judgment Documents Utilizing Machine Learning Algorithms
    Lei, Miaomiao
    Ge, Jidong
    Li, Zhongjin
    Li, Chuanyi
    Zhou, Yemao
    Zhou, Xiaoyu
    Luo, Bin
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2017), 2017, 10179 : 3 - 17
  • [5] A tree-based machine learning methodology to automatically classify software vulnerabilities
    Aivatoglou, Georgios
    Anastasiadis, Mike
    Spanos, Georgios
    Voulgaridis, Antonis
    Votis, Konstantinos
    Tzovaras, Dimitrios
    [J]. PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 312 - 317
  • [6] Comparison of 3 different machine learning methods to classify the emotional states using physiological responses
    Yang, Heui Kyung
    Jang, Eun-Hye
    Park, Ji-Eun
    Noh, Ji-Hye
    Kim, Hyo-Eun
    Sohn, Jin-Hun
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2011, 81 (03) : 339 - 339
  • [7] Comparative study of machine learning methods to classify bowel polyps
    Cincar, Kristijan
    Ivascu, Todor
    Negru, Viorel
    [J]. 2023 25TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, SYNASC 2023, 2023, : 279 - 286
  • [8] Comparison of two different methods to automatically classify auditory nerve responses recorded with NRT system
    Charasse, B
    Killian, M
    Berger-Vachon, C
    Collet, L
    [J]. ACTA ACUSTICA UNITED WITH ACUSTICA, 2004, 90 (03) : 512 - 519
  • [9] The application of machine learning methods to identify and classify potential transdermal enhancers
    Moss, G. P.
    Shah, A. J.
    Judd, A.
    Adams, R. G.
    Davey, N.
    Wilkinson, S. C.
    Pugh, W. J.
    Sun, Y.
    [J]. INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, 2012, 34 (04) : 377 - 377
  • [10] Machine Learning and Creative Methods Used to Classify Customers in a CRM Systems
    Cioca, Marius
    Ghete, Andrada-Iulia
    Cioca, Lucian-Ionel
    Gifu, Daniela
    [J]. INNOVATIVE MANUFACTURING ENGINEERING, 2013, 371 : 769 - +