Magmas trapped at the continental lithosphere-asthenosphere boundary

被引:25
|
作者
Crepisson, C. [1 ]
Morard, G. [2 ]
Bureau, H. [2 ]
Prouteau, G. [3 ]
Morizet, Y. [3 ,4 ]
Petitgirard, S. [5 ]
Sanloup, C. [1 ,6 ,7 ]
机构
[1] Sorbonne Univ, Univ Paris 06, UMR CNRS 7193, Inst Sci Terre Paris ISTeP, F-75005 Paris, France
[2] Sorbonne Univ, Univ Paris 06, UMR CNRS 7590, IMPMC, F-75005 Paris, France
[3] ISTO, Orleans, France
[4] Univ Nantes, LPGN, UMR CNRS 6112, F-44035 Nantes, France
[5] European Synchrotron Radiat Facil, F-38043 Grenoble, France
[6] Univ Edinburgh, CSEC, Edinburgh EH8 9YL, Midlothian, Scotland
[7] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH8 9YL, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
molten basalts; density; structure; asthenosphere; cratons; SUBDUCTED OCEANIC-CRUST; NATURAL SILICATE MELTS; MORB-LIKE PYROXENITE; UPPER-MANTLE; COMPUTER-SIMULATION; SEISMIC EVIDENCE; PHASE-RELATIONS; AL-27; NMR; GPA; CONSTRAINTS;
D O I
10.1016/j.epsl.2014.02.048
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The lithosphere-asthenosphere boundary (LAB) beneath the continents is a key interface in plate tectonics, yet its nature remains elusive. A partial melt layer has been advocated to explain its geophysical characteristics. However, the main counter-argument is that such a layer cannot be stable as melts should rise through the lithosphere. Density measurements of volatile-containing alkali basalts taken as a proxy for LAB melts show that they are neutrally buoyant at the pressure (P)-temperature (T) conditions of the LAB under continents. Complementary X-ray diffraction and Raman data provide structural insights on melt compaction mechanisms. Basalts generated below the lithosphere may thus be gravitationally trapped and accumulate over time. Their presence provides answers to key questions on continental lithosphere geodynamics, and in particular on cratonic keels stability. This buoyancy trap would cease to exist at higher mantle T such as those relevant of the Archean, and as such, could be linked to the onset of plate tectonics. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] LITHOSPHERE-ASTHENOSPHERE BOUNDARY
    JORDAN, TH
    FYFE, WS
    [J]. GEOLOGY, 1976, 4 (12) : 770 - 772
  • [2] The Lithosphere-Asthenosphere Boundary
    Fischer, Karen M.
    Ford, Heather A.
    Abt, David L.
    Rychert, Catherine A.
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 38, 2010, 38 : 551 - 575
  • [3] The continental lithosphere-asthenosphere boundary Can we sample it?
    O'Reilly, Suzanne Y.
    Griffin, W. L.
    [J]. LITHOS, 2010, 120 (1-2) : 1 - 13
  • [4] The Nature of the Lithosphere-Asthenosphere Boundary
    Rychert, Catherine A.
    Harmon, Nicholas
    Constable, Steven
    Wang, Shunguo
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (10)
  • [5] The mechanics of continental lithosphere-asthenosphere coupling
    O'Neill, C. J.
    Kobussen, A.
    Lenardic, A.
    [J]. LITHOS, 2010, 120 (1-2) : 55 - 62
  • [6] A Global View of the Lithosphere-Asthenosphere Boundary
    Rychert, Catherine A.
    Shearer, Peter M.
    [J]. SCIENCE, 2009, 324 (5926) : 495 - 498
  • [7] Viscous coupling at the lithosphere-asthenosphere boundary
    Hoeink, Tobias
    Jellinek, A. Mark
    Lenardic, Adrian
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2011, 12
  • [8] MOVEMENT OF THE LITHOSPHERE-ASTHENOSPHERE INTERFACE IN RESPONSE TO EROSION OF THICKENED CONTINENTAL LITHOSPHERE - A MOVING BOUNDARY APPROACH
    MANGLIK, A
    GLIKO, AO
    SINGH, RN
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 1995, 122 (02) : 479 - 488
  • [9] Application of a Premelting Model to the Lithosphere-Asthenosphere Boundary
    Yamauchi, Hatsuki
    Takei, Yasuko
    [J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2020, 21 (11)
  • [10] Scattered wave imaging of the lithosphere-asthenosphere boundary
    Rychert, Catherine A.
    Shearer, Peter M.
    Fischer, Karen M.
    [J]. LITHOS, 2010, 120 (1-2) : 173 - 185