LOCAL STABILIZATION OF THE QUASIPERIODIC RESPONSE OF THE GENERALIZED VAN DER POL OSCILLATOR

被引:1
|
作者
Fischer, C. [1 ]
Naprstek, J. [1 ]
机构
[1] Inst Theoret & Appl Mech, Prosecka 76, Prague 19000 9, Czech Republic
来源
关键词
Generalized van der Pol equation; Quasiperiodic response; Sub- and Superharmonic synchronization; Beating effect; Numerical simulation;
D O I
10.21495/71-0-105
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The generalized van der Pol equation is often used for description of various effects originating in the aero-elasticity of large slender engineering structures. This applies mainly to the quasiperiodic beatings that can be encountered especially in lock-in regimes when the vortex frequency becomes close to the structure eigenfrequency with a small detuning. The current paper presents numerical analysis of influence of the sub- or superharmonic excitation on the character of the response of a generalized van der Pol oscillator. This way it complements two previous papers of the authors dealing with stability analysis of certain types of the stationary periodic or quasiperiodic response of the system under study.
引用
收藏
页码:105 / 108
页数:4
相关论文
共 50 条
  • [21] Nonstationary Response of Optimal Controlled Stochastic Van Der Pol Oscillator
    Qi, Luyuan
    Xu, Wei
    Gao, Weiting
    MATERIALS RESEARCH AND APPLICATIONS, PTS 1-3, 2014, 875-877 : 2000 - +
  • [22] Stochastic response of fractional-order van der Pol oscillator
    Lincong Chen
    Weiqiu Zhu
    Theoretical & Applied Mechanics Letters, 2014, 4 (01) : 74 - 78
  • [23] ASYNCHRONOUS QUENCHING OF VAN DER POL OSCILLATOR
    DEWAN, EM
    LASHINSKY, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (02) : 212 - +
  • [24] Complex order van der Pol oscillator
    Carla M. A. Pinto
    J. A. Tenreiro Machado
    Nonlinear Dynamics, 2011, 65 : 247 - 254
  • [25] A model of the distributed Van der Pol oscillator
    Kambulov, VF
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (09): : 1121 - 1124
  • [26] Complex order van der Pol oscillator
    Pinto, Carla M. A.
    Tenreiro Machado, J. A.
    NONLINEAR DYNAMICS, 2011, 65 (03) : 247 - 254
  • [27] Potential landscape of the Van der Pol oscillator
    Lu, Qiang
    Yue, Chao
    Zhang, Zhaochen
    2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1, 2019, : 51 - 54
  • [28] JUMP PHENOMENON IN A VAN DER POL OSCILLATOR
    LEPOURHIET, A
    PAQUET, JG
    AUTOMATICA, 1971, 7 (04) : 481 - +
  • [29] The Lyapunov exponents of the Van der Pol oscillator
    Grasman, J
    Verhulst, F
    Shih, SD
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (10) : 1131 - 1139
  • [30] PERIODIC MOTIONS IN A VAN DER POL OSCILLATOR
    Xu, Yeyin
    Luo, Albert C. J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 4B, 2019,