Upper bounds for Vertex Cover further improved

被引:0
|
作者
Niedermeier, R
Rossmanith, P
机构
[1] Univ Tubingen, Wilhelm Schickard Inst Informat, D-72076 Tubingen, Germany
[2] Tech Univ Munich, Inst Informat, D-80290 Munich, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem instance of Vertex Cover consists of an undirected graph G = (V, E) and a positive integer k, the question is whether there exists a subset C subset of or equal to V of vertices such that each edge in E has at least one of its endpoints in C with \C\ less than or equal to k. We improve two recent worst case upper bounds for Vertex Cover. First, Balasubramanian et al. showed that Vertex Cover can be solved in time O(kn + 1.32472(k)k(2)), where n is the number of vertices in G. Afterwards, Downey et al. improved this to O(kn + 1.31951(k)k(2)). Bringing the exponential base significantly below 1.3, we present the new upper bound O(kn + 1.29175(k)k(2)).
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [21] Enumerate and expand:: Improved algorithms for connected vertex cover and tree cover
    Moelle, Daniel
    Richter, Stefan
    Rossmanith, Peter
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2006, 3967 : 270 - 280
  • [22] Enumerate and expand:: Improved algorithms for connected Vertex Cover and Tree Cover
    Moelle, Daniel
    Richter, Stefan
    Rossmanith, Peter
    THEORY OF COMPUTING SYSTEMS, 2008, 43 (02) : 234 - 253
  • [23] Improved bounds for minimal feedback vertex sets in tournaments
    Mnich, M.
    Teutrine, E.
    JOURNAL OF GRAPH THEORY, 2018, 88 (03) : 482 - 506
  • [24] EFFICIENT BOUNDS FOR THE STABLE SET, VERTEX COVER AND SET PACKING PROBLEMS
    HOCHBAUM, DS
    DISCRETE APPLIED MATHEMATICS, 1983, 6 (03) : 243 - 254
  • [25] New lower bounds for Vertex Cover in the Lovasz-Schrijver hierarchy
    Tourlakis, Iannis
    CCC 2006: TWENTY-FIRST ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2006, : 170 - 179
  • [26] The k-path vertex cover: General bounds and chordal graphs
    Bujtas, Csilla
    Jakovac, Marko
    Tuza, Zsolt
    NETWORKS, 2022, 80 (01) : 63 - 76
  • [27] An improved approximation algorithm for vertex cover with hard capacities
    Gandhi, R
    Halperin, E
    Khuller, S
    Kortsarz, G
    Srinivasan, A
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (01) : 16 - 33
  • [28] An improved fixed-parameter algorithm for vertex cover
    Balasubramanian, R
    Fellows, MR
    Raman, V
    INFORMATION PROCESSING LETTERS, 1998, 65 (03) : 163 - 168
  • [29] UPPER BOUNDS FOR VERTEX DEGREES OF PLANAR 5 CHROMATIC GRAPHS
    JOHNSON, LW
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 181 (JUL) : 53 - 59
  • [30] Upper bounds on linear vertex-arboricity of complementary graphs
    Alavi, Y
    Erdos, P
    Lam, PCB
    Lick, D
    Liu, JQ
    Wang, JF
    UTILITAS MATHEMATICA, 1997, 52 : 43 - 48