Octagonal symmetry in low-discrepancy β-manganese

被引:10
|
作者
Hornfeck, Wolfgang [1 ]
Kuhn, Philipp [1 ]
机构
[1] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Mat Phys Weltraum, D-51170 Cologne, Germany
关键词
CRYSTAL-STRUCTURE; QUASI-CRYSTAL; STRUCTURE MODEL; MN; PHASE; PACKINGS; ALLOY; MN4SI;
D O I
10.1107/S2053273314009218
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A low-discrepancy cubic variant of beta-Mn is presented exhibiting local octagonal symmetry upon projection along any of the three mutually perpendicular < 100 > axes. Ideal structural parameters are derived to be x(8c) = (2-root 2 / 16 and y(12d) = 1 / (4 root 2) for the P4(1)32 enantiomorph. A comparison of the actual and ideal structure models of beta-Mn is made in terms of the newly devised concept of geometrical discrepancy maps. Two-dimensional maps of both the geometrical star discrepancy D* and the minimal interatomic distance d(min) are calculated over the combined structural parameter range 0 <= x(8c) < 1/8 and 1/8 <= y(12) < 1/4 of generalized beta-Mn type structures, showing that the 'octagonal' variant of beta-Mn is almost optimal in terms of globally minimizing D* while at the same time globally maximizing dmin. Geometrical discrepancy maps combine predictive and discriminatory powers to appear useful within a wide range of structural chemistry studies. (C) 2014 International Union of Crystallography
引用
收藏
页码:441 / 447
页数:7
相关论文
共 50 条
  • [31] Learning With Kernel Smoothing Models and Low-Discrepancy Sampling
    Cervellera, Cristiano
    Maccio, Danilo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (03) : 504 - 509
  • [32] On the Use of Low-discrepancy Sequences in the Training of Neural Networks
    Atanassov, E.
    Gurov, T.
    Georgiev, D.
    Ivanovska, S.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 421 - 430
  • [33] Application of Deterministic Low-Discrepancy Sequences in Global Optimization
    Sergei Kucherenko
    Yury Sytsko
    [J]. Computational Optimization and Applications, 2005, 30 : 297 - 318
  • [34] Application of deterministic low-discrepancy sequences in global optimization
    Kucherenko, S
    Sytsko, Y
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (03) : 297 - 318
  • [35] Low-discrepancy sampling for structural reliability sensitivity analysis
    Cao, Zhenggang
    Dai, Hongzhe
    Wang, Wei
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2011, 38 (01) : 125 - 140
  • [36] Low-discrepancy point sets for non-uniform measures
    Aistleitner, Christoph
    Dick, Josef
    [J]. ACTA ARITHMETICA, 2014, 163 (04) : 345 - 369
  • [37] Low-discrepancy sampling for approximate dynamic programming with local approximators
    Cervellera, C.
    Gaggero, M.
    Maccio, D.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2014, 43 : 108 - 115
  • [38] Application of Low-Discrepancy Sequences for Evaluation of Illumination Optical Systems
    Yoshida, S.
    Horiuchi, S.
    Ushiyama, Z.
    Yoshidome, K.
    Yamada, T.
    Yamamoto, M.
    [J]. ILLUMINATION OPTICS II, 2011, 8170
  • [39] Pricing Bermudan options using low-discrepancy mesh methods
    Boyle, Phelim P.
    Kolkiewicz, Adam W.
    Tan, Ken Seng
    [J]. QUANTITATIVE FINANCE, 2013, 13 (06) : 841 - 860
  • [40] An algorithm for QMC integration using low-discrepancy lattice sets
    Franek, Vojtech
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (03): : 447 - 462