Convergence Analysis of a LDG Method for Time-Space Tempered Fractional Diffusion Equations with Weakly Singular Solutions

被引:3
|
作者
Safari, Z. [1 ]
Loghmani, G. B. [1 ]
Ahmadinia, M. [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd, Iran
[2] Univ Qom, Fac Sci, Dept Math, Isfahan Old Rd, Qom, Iran
基金
美国国家科学基金会;
关键词
Tempered fractional derivative; Local discontinuous Galerkin method; Finite difference method; Graded mesh; Stability; Error Estimates; DISCONTINUOUS GALERKIN METHOD; ADVECTION-DISPERSION EQUATION; FINITE-DIFFERENCE METHOD; HIGH-ORDER; ERROR ANALYSIS; RANDOM-WALKS; SCHEMES; SUPERCONVERGENCE; MESHES;
D O I
10.1007/s10915-022-01835-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of time-space tempered fractional diffusion equations is considered in this paper. The solution of these problems generally have a weak singularity near the initial time t = 0. To solve the time-space tempered fractional diffusion equations, a fully discrete local discontinuous Galerkin (LDG) method is proposed. The basic idea is to apply LDG method in the space on uniform meshes and a finite difference method in the time on graded meshes to deal with the weak singularity at initial time t = 0. The discrete fractional Gronwall inequality is used to analyze the stability and convergence of the method. Numerical results show that the proposed method for time-space tempered fractional diffusion equation is accurate and reliable.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Convergence Analysis of a LDG Method for Time–Space Tempered Fractional Diffusion Equations with Weakly Singular Solutions
    Z. Safari
    G. B. Loghmani
    M. Ahmadinia
    Journal of Scientific Computing, 2022, 91
  • [2] Convergence analysis of a LDG method for tempered fractional convection-diffusion equations
    Ahmadinia, Mahdi
    Safari, Zeinab
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (01): : 59 - 78
  • [3] Maximum principle for the time-space fractional diffusion equations
    Wang, Jingyu
    Yan, Zaizai
    Zhao, Yang
    Lv, Zhihan
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (12) : 5636 - 5640
  • [4] Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations
    Ahmadinia, M.
    Safari, Z.
    Fouladi, S.
    BIT NUMERICAL MATHEMATICS, 2018, 58 (03) : 533 - 554
  • [5] A Fourth Order Finite Difference Method for Time-Space Fractional Diffusion Equations
    Arshad, Sadia
    Baleanu, Dumitru
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (04) : 764 - 781
  • [6] A unified difference-spectral method for time-space fractional diffusion equations
    Huang, Jianfei
    Yang, Dandan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (06) : 1172 - 1184
  • [7] Finite difference method for time-space linear and nonlinear fractional diffusion equations
    Arshad, Sadia
    Bu, Weiping
    Huang, Jianfei
    Tang, Yifa
    Zhao, Yue
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (01) : 202 - 217
  • [8] A numerical method for distributed order time fractional diffusion equation with weakly singular solutions
    Ren, Jincheng
    Chen, Hu
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 159 - 165
  • [9] Block splitting preconditioner for time-space fractional diffusion equations
    Luo, Jia-Min
    Li, Hou-Biao
    Wei, Wei-Bo
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (03): : 780 - 797
  • [10] Block preconditioning strategies for time-space fractional diffusion equations
    Chen, Hao
    Zhang, Tongtong
    Lv, Wen
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 41 - 53