A LANCZOS METHOD FOR LARGE-SCALE EXTREME LORENTZ EIGENVALUE PROBLEMS

被引:8
|
作者
Zhang, Lei-Hong [1 ,2 ]
Shen, Chungen [3 ]
Yang, Wei Hong [4 ]
Judice, Joaquim J. [5 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[2] Shanghai Univ Finance & Econ, Res Sch Interdisciplinary Sci, Shanghai 200433, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[4] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[5] Univ Coimbra, Inst Telecomunicacoes, Polo 2, P-3030290 Coimbra, Portugal
基金
中国国家自然科学基金;
关键词
eigenvalue problem; eigenvalue complementarity problem; copositivity; second-order cone problem; TRUST-REGION SUBPROBLEM; COMPLEMENTARITY-PROBLEM; CONVERGENCE;
D O I
10.1137/17M1111401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with an efficient algorithm for solving the extreme Lorentz eigenvalue problem (ELE). The Lorentz eigenvalue problem is an eigenvalue complementarity problem over the Lorentz cone, and solving ELE is equivalent to testing the Lorentz-copositivity for a given matrix. Treating ELE as a special eigenvalue problem, we propose a Lanczos-type method which mimics the Rayleigh-Ritz procedure and is suitable for large-scale and sparse problems. The numerical behavior and efficiency of the proposed method are supported by the theoretical convergence results and some preliminary numerical experiments.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 50 条
  • [41] Residual algorithm for large-scale positive definite generalized eigenvalue problems
    Bello, Lenys
    La Cruz, William
    Raydan, Marcos
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) : 217 - 227
  • [42] Generalized eigenvalue problems: Lanczos algorithm with a recursive partitioning method
    Sundar, S
    Bhagavan, BK
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (7-8) : 211 - 224
  • [43] THE INFINITE BI-LANCZOS METHOD FOR NONLINEAR EIGENVALUE PROBLEMS
    Gaaf, Sarah W.
    Jarlebring, Elias
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : S898 - S919
  • [44] A refined Arnoldi type method for large scale eigenvalue problems
    Wang, Xiang
    Niu, Qiang
    Lu, Lin-zhang
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2013, 30 (01) : 129 - 143
  • [45] Residual algorithm for large-scale positive definite generalized eigenvalue problems
    Lenys Bello
    William La Cruz
    Marcos Raydan
    [J]. Computational Optimization and Applications, 2010, 46 : 217 - 227
  • [46] A moment-based method for large scale eigenvalue problems
    Sakurai, T
    Tadano, H
    Inadomi, Y
    Nagashima, U
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 333 - 336
  • [47] A refined Arnoldi type method for large scale eigenvalue problems
    Xiang Wang
    Qiang Niu
    Lin-zhang Lu
    [J]. Japan Journal of Industrial and Applied Mathematics, 2013, 30 : 129 - 143
  • [48] The implicitly restarted multi-symplectic block-Lanczos method for large-scale Hermitian quaternion matrix eigenvalue problem and applications
    Jia, Zhigang
    Liu, Xuan
    Zhao, Meixiang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
  • [49] THE SPECTRAL TRANSFORMATION LANCZOS METHOD FOR THE NUMERICAL-SOLUTION OF LARGE SPARSE GENERALIZED SYMMETRIC EIGENVALUE PROBLEMS
    ERICSSON, T
    RUHE, A
    [J]. MATHEMATICS OF COMPUTATION, 1980, 35 (152) : 1251 - 1268
  • [50] A METHOD OF SOLVING TRANSPORTATION PROBLEMS, ESPECIALLY LARGE-SCALE PROBLEMS
    GRACE, JC
    [J]. OPERATIONS RESEARCH, 1958, 6 (04) : 632 - 633