Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets

被引:334
|
作者
Cheng, Peifu [1 ]
Sun, Kai [2 ]
Hu, Yun Hang [1 ]
机构
[1] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Memristor; MoS2; IT metallic phase; odd-symmetric; GRAIN-BOUNDARIES; MECHANISM;
D O I
10.1021/acs.nanolett.5b04260
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Memristor, which had been predicted a long time ago (Chua, L. O. IEEE Trans. Circuit Theoly 1971, 18, 507), was recently invented (Strukov, D. B.; et al. Nature 2008, 453, 80). The introduction of a memristor is expected to open a new era for nonvolatile memory storage, neuromorphic computing, digital logic, and analog circuit. Furthermore, several breakthroughs were made for memristive phenomena and transistors with single-layer MoS2 (Sangwan, V. K.; et al. Nat. Nanotechnol. 2015, 10, 403. van der Zande, A. M.; et al. Nat. Mater. 2013, 12, 554. Liu, H.; et al. ACS Nano 2014, 8, 1031. Bessonov, A. A.; et al. Nat. Mater. 2015, 14, 199. Yuan, J.; et al. Nat. Nanotechnol. 2015, 10, 389). Herein, we demonstrate that 2H phase of bulk MoS2, possessed an ohmic. feature, whereas 1T phase of exfoliated MoS2, nanosheets exhibited a unique memristive behavior due to voltage-dependent resistance change. Furthermore, an ideal odd-symmetric memristor with odd-symmetric I V characteristics was successfully fabricated by the 1T phase MoS2 nanosheets via combining two asymmetric switches antiserially.
引用
收藏
页码:572 / 576
页数:5
相关论文
共 50 条
  • [21] High-content 1T phase MoS2 nanosheets coupled on graphene oxide for lithium-ion batteries
    Zhou, Xinglan
    Lan, Xiaoyan
    Jiao, Zipan
    Zong, Haoran
    Zhang, Peng
    Xu, Benhua
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [22] Facile hydrothermal process achieving 1T/2H phase tailoring of MoS2 nanosheets for efficient microwave absorption
    Liu, Shiqiao
    Fang, Debao
    Xing, Fangyuan
    Jin, Haibo
    Li, Jingbo
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 676
  • [23] Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers
    Lina Liu
    Juanxia Wu
    Liyuan Wu
    Meng Ye
    Xiaozhi Liu
    Qian Wang
    Siyao Hou
    Pengfei Lu
    Lifei Sun
    Jingying Zheng
    Lei Xing
    Lin Gu
    Xiangwei Jiang
    Liming Xie
    Liying Jiao
    [J]. Nature Materials, 2018, 17 : 1108 - 1114
  • [24] Heteroepitaxial Growth of 1T MoS2 Nanosheets on SnO2 with Synergetic Improvement on Photocatalytic Activity
    Shan, Songting
    Zhu, Shuaishuai
    Pan, Zhigang
    Lu, Yinong
    Liu, Yunfei
    Tao, Yaqiu
    [J]. CRYSTAL RESEARCH AND TECHNOLOGY, 2021, 56 (02)
  • [25] Temperature- and Phase-Dependent Phonon Renormalization in 1T′-MoS2
    Tan, Sherman Jun Rong
    Sarkar, Soumya
    Zhao, Xiaoxu
    Luo, Xin
    Luo, Yong Zheng
    Poh, Sock Mui
    Abdelwahab, Ibrahim
    Zhou, Wu
    Venkatesan, Thirumalai
    Chen, Wei
    Quek, Su Ying
    Loh, Kian Ping
    [J]. ACS NANO, 2018, 12 (05) : 5051 - 5058
  • [26] Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers
    Liu, Lina
    Wu, Juanxia
    Wu, Liyuan
    Ye, Meng
    Liu, Xiaozhi
    Wang, Qian
    Hou, Siyao
    Lu, Pengfei
    Sun, Lifei
    Zheng, Jingying
    Xing, Lei
    Gu, Lin
    Jiang, Xiangwei
    Xie, Liming
    Jiao, Liying
    [J]. NATURE MATERIALS, 2018, 17 (12) : 1108 - +
  • [27] 1T'-MoS2, a promising candidate for sensing NOx
    Linghu, Yaoyao
    Wu, Chao
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [28] Ballistic Conductance in a Topological 1T '-MoS2 Nanoribbon
    Sverdlov, V
    El-Sayed, E. A-M
    Kosina, H.
    Selberherr, S.
    [J]. SEMICONDUCTORS, 2020, 54 (12) : 1713 - 1715
  • [29] 1T′-MoS2, A Promising Candidate for Sensing NOx
    Linghu, Yaoyao
    Wu, Chao
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (16): : 10339 - 10345
  • [30] Ballistic Conductance in a Topological 1T '-MoS2 Nanoribbon
    V. Sverdlov
    E. A.-M. El-Sayed
    H. Kosina
    S. Selberherr
    [J]. Semiconductors, 2020, 54 : 1713 - 1715