FPGA implementation of the conjugate gradient method

被引:0
|
作者
Maslennikow, Oleg
Lepekha, Volodymyr
Sergyienko, Anatoli
机构
[1] Tech Univ Koszalin, PL-75453 Koszalin, Poland
[2] Natl Tech Univ Ukraine, UA-03056 Kiev, Ukraine
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rational fraction number system is proposed to solve the algebraic problems in FPGA devices. The fraction number consists of the n-bit integer numerator and the n-bit integer denominator, and can represent numbers with 2n bit mantissa. Experimental linear equation system solver was developed in FPGA device, which implements the recursive conjugate gradient method. Its hardware arithmetic unit can calculate addition, multiplication, and division of fraction numbers with n=35 in a pipelined mode. The proposed unit operates with the band matrices with the dimensions up to 3500.
引用
收藏
页码:526 / 533
页数:8
相关论文
共 50 条
  • [31] A New Nonlinear Conjugate Gradient Method
    AwadAbdelrahman
    Mamat, Mustafa
    bin Mohd, Ismail
    MohdRivaie
    Omer, Osman
    [J]. 2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 577 - 586
  • [32] A note on the nonlinear conjugate gradient method
    Dai, YH
    Yuan, YX
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (06) : 575 - 582
  • [33] THE LIMITED MEMORY CONJUGATE GRADIENT METHOD
    Hager, William W.
    Zhang, Hongchao
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) : 2150 - 2168
  • [34] A NOTE ON THE NONLINEAR CONJUGATE GRADIENT METHOD
    Yu-hong Dai Ya-xiang Yuan(State Key Laboratory of Scientific and Engineering Computing
    [J]. Journal of Computational Mathematics, 2002, (06) : 575 - 582
  • [35] A Hybrid Nonlinear Conjugate Gradient Method
    Liu, Jinkui
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2012, 33 (03) : 195 - 199
  • [36] RESTART PROCEDURES FOR CONJUGATE GRADIENT METHOD
    POWELL, MJD
    [J]. MATHEMATICAL PROGRAMMING, 1977, 12 (02) : 241 - 254
  • [37] A modified PRP conjugate gradient method
    Yuan, Gonglin
    Lu, Xiwen
    [J]. ANNALS OF OPERATIONS RESEARCH, 2009, 166 (01) : 73 - 90
  • [38] Symmetric Perry conjugate gradient method
    Liu, Dongyi
    Xu, Genqi
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2013, 56 (02) : 317 - 341
  • [39] Improved form of the conjugate gradient method
    Kalitkin N.N.
    Kuz’mina L.V.
    [J]. Mathematical Models and Computer Simulations, 2012, 4 (1) : 68 - 81
  • [40] LINEAR CONVERGENCE OF CONJUGATE GRADIENT METHOD
    CROWDER, H
    WOLFE, P
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1972, 16 (04) : 431 - &