The dimension of ergodic random sequences

被引:9
|
作者
Hoyrup, Mathieu [1 ]
机构
[1] INRIA Nancy Grand Est, LORIA, Bat b,615 Rue Jardin Bot,BP 239, F-54506 Vandoeuvre Les Nancy, France
关键词
Shannon-McMillan-Breiman theorem; Martin-Lof random sequence; effective Hausdorff dimension; compression rate; entropy; DATA-COMPRESSION; COMPLEXITY; INFORMATION; ENTROPY;
D O I
10.4230/LIPIcs.STACS.2012.567
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let mu be a computable ergodic shift-invariant measure over {0, 1}(N). Providing a constructive proof of Shannon-McMillan-Breiman theorem, V'yugin proved that if x is an element of{0, 1}(N) is Martin-Lof random w.r.t. mu then the strong effective dimension Dim(x) of x equals the entropy of mu. Whether its effective dimension dim(x) also equals the entropy was left as an open problem. In this paper we settle this problem, providing a positive answer. A key step in the proof consists in extending recent results on Birkhoff's ergodic theorem for Martin-Lof random sequences. At the same time, we present extensions of some previous results. As pointed out by a referee the main result can also be derived from results by Hochman [8], using rather different considerations.
引用
收藏
页码:567 / 576
页数:10
相关论文
共 50 条
  • [1] Ergodic theorems for algorithmically random sequences
    Nakamura, M
    Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 2005, : 148 - 151
  • [2] Ergodic theorems for individual random sequences
    V'yugin, VV
    THEORETICAL COMPUTER SCIENCE, 1998, 207 (02) : 343 - 361
  • [3] RANDOM ERGODIC SEQUENCES ON LCA GROUPS
    REICH, JI
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 265 (01) : 59 - 68
  • [4] Mutual Dimension and Random Sequences
    Case, Adam
    Lutz, Jack H.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 199 - 210
  • [5] Mutual dimension and random sequences
    Case, Adam
    Lutz, Jack H.
    THEORETICAL COMPUTER SCIENCE, 2018, 731 : 68 - 87
  • [6] SWW Sequences and the Infinite Ergodic Random Walk
    S. Eigen
    A. Hajian
    V. Prasad
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2019, 54 : 20 - 27
  • [7] SWW Sequences and the Infinite Ergodic Random Walk
    Eigen, S.
    Hajian, A.
    Prasad, V.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (01): : 20 - 27
  • [8] Random Sequences and Pointwise Convergence of Multiple Ergodic Averages
    Frantzikinakis, N.
    Lesigne, E.
    Wierdl, M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (02) : 585 - 617
  • [9] RANDOM ERGODIC-THEOREMS WITH UNIVERSALLY REPRESENTATIVE SEQUENCES
    LACEY, M
    PETERSEN, K
    WIERDL, M
    RUDOLPH, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1994, 30 (03): : 353 - 395
  • [10] Multidimensional ergodic theorems and universally representative random sequences.
    Gamet, C
    Schneider, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (02): : 269 - 282