Random Sequences and Pointwise Convergence of Multiple Ergodic Averages

被引:16
|
作者
Frantzikinakis, N. [1 ]
Lesigne, E. [2 ]
Wierdl, M. [3 ]
机构
[1] Univ Crete, Dept Math, Iraklion 71409, Greece
[2] Univ Tours, Federat Rech Denis Poisson, Lab Math & Phys Theor, UMR CNRS 6083, F-37200 Tours, France
[3] Univ Memphis, Dept Math, Memphis, TN 38152 USA
基金
美国国家科学基金会;
关键词
ergodic averages; mean convergence; pointwise convergence; multiple recurrence; random sequences; commuting transformations; COMMUTING TRANSFORMATIONS; DIAGONAL MEASURES; THEOREMS; RECURRENCE; INTEGERS; SYSTEMS; GROWTH;
D O I
10.1512/iumj.2012.61.4571
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove pointwise convergence, as N -> infinity, for the multiple ergodic averages (1/N) Sigma(N)(n=1) f(T(n)x) . g(S(an)x), where T and S are commuting measure preserving transformations, and a(n) is a random version of the sequence [n(c)] for some appropriate c > 1. We also prove similar mean convergence results for averages of the form (1/N) Sigma(N)(n=1) f(T(an)x) . g(S(an)x), as well as pointwise results when T and S are powers of the same transformations. The deterministic versions of these results, where one replaces a(n) with [n(c)], remain open, and we hope that our method will indicate a fruitful way to approach these problems as well.
引用
收藏
页码:585 / 617
页数:33
相关论文
共 50 条
  • [1] Pointwise convergence of some multiple ergodic averages
    Donoso, Sebastian
    Sun, Wenbo
    ADVANCES IN MATHEMATICS, 2018, 330 : 946 - 996
  • [2] Pointwise convergence of multiple ergodic averages and strictly ergodic models
    Wen Huang
    Song Shao
    Xiangdong Ye
    Journal d'Analyse Mathématique, 2019, 139 : 265 - 305
  • [3] POINTWISE CONVERGENCE OF MULTIPLE ERGODIC AVERAGES AND STRICTLY ERGODIC MODELS
    Huang, Wen
    Shao, Song
    Ye, Xiangdong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 265 - 305
  • [4] Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold
    Leibman, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 201 - 213
  • [5] POINTWISE CONVERGENCE OF ERGODIC AVERAGES ALONG CUBES
    Assani, I.
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 110 : 241 - 269
  • [6] POINTWISE CONVERGENCE OF ERGODIC AVERAGES IN ORLICZ SPACES
    Parrish, Andrew
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (01) : 89 - 106
  • [7] Pointwise convergence of ergodic averages along cubes
    I. Assani
    Journal d'Analyse Mathématique, 2010, 110 : 241 - 269
  • [8] Powers of sequences and convergence of ergodic averages
    Frantzikinakis, N.
    Johnson, M.
    Lesigne, E.
    Wierdl, M.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1431 - 1456
  • [9] Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations
    Chu, Qing
    Frantzikinakis, Nikos
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 877 - 897
  • [10] Pointwise convergence of certain continuous-time double ergodic averages
    Christ, Michael
    Durcik, Polona
    Kovac, Vjekoslav
    Roos, Joris
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (07) : 2270 - 2280