Koszul and Gorenstein properties for homogeneous algebras

被引:45
|
作者
Berger, Roland [1 ]
Marconnet, Nicolas [1 ]
机构
[1] LARAL, Fac Sci & Tech, F-42023 St Etienne, France
关键词
Koszul algebras; Gorenstein algebras; N-complexes; Hochschild (co) homology;
D O I
10.1007/s10468-005-9002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Koszul property was generalized to homogeneous algebras of degree N > 2 in [ 5], and related to N-complexes. We show that if the N-homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem to A, i.e., there is a Poincare duality between Hochschild homology and cohomology of A, as for N = 2.
引用
收藏
页码:67 / 97
页数:31
相关论文
共 50 条
  • [31] Quadratic Gorenstein Rings and the Koszul Property II
    Mastroeni, Matthew
    Schenck, Hal
    Stillman, Mike
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (02) : 1461 - 1482
  • [32] Notes on δ-Koszul Algebras
    Lu, Jia-Feng
    APPLIED CATEGORICAL STRUCTURES, 2012, 20 (02) : 143 - 159
  • [33] Discrete Koszul Algebras
    Jia-Feng Lü
    Miao-Sen Chen
    Algebras and Representation Theory, 2012, 15 : 273 - 293
  • [34] Universally Koszul algebras
    Conca, A
    MATHEMATISCHE ANNALEN, 2000, 317 (02) : 329 - 346
  • [35] Koszul Algebras and Computations
    Bigatti, Anna M.
    De Negri, Emanuela
    COMPUTATIONS AND COMBINATORICS IN COMMUTATIVE ALGEBRA, 2017, 2176 : 1 - 39
  • [36] Koszul algebras and their ideals
    Piontkovskii, DI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2005, 39 (02) : 120 - 130
  • [37] ON AN EXAMPLE OF δ-KOSZUL ALGEBRAS
    Lue, Jia-Feng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (11) : 3777 - 3781
  • [38] Notes on δ-Koszul Algebras
    Jia-Feng Lü
    Applied Categorical Structures, 2012, 20 : 143 - 159
  • [39] Yoneda algebras of almost Koszul algebras
    Zheng Lijing
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (04): : 477 - 485
  • [40] GORENSTEIN DIMENSION AND AS-GORENSTEIN ALGEBRAS
    Ueyama, Kenta
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4253 - 4268