Koszul and Gorenstein properties for homogeneous algebras

被引:45
|
作者
Berger, Roland [1 ]
Marconnet, Nicolas [1 ]
机构
[1] LARAL, Fac Sci & Tech, F-42023 St Etienne, France
关键词
Koszul algebras; Gorenstein algebras; N-complexes; Hochschild (co) homology;
D O I
10.1007/s10468-005-9002-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Koszul property was generalized to homogeneous algebras of degree N > 2 in [ 5], and related to N-complexes. We show that if the N-homogeneous algebra A is generalized Koszul, AS-Gorenstein and of finite global dimension, then one can apply the Van den Bergh duality theorem to A, i.e., there is a Poincare duality between Hochschild homology and cohomology of A, as for N = 2.
引用
收藏
页码:67 / 97
页数:31
相关论文
共 50 条