On adiabatic theory for extended fermionic lattice systems

被引:0
|
作者
Henheik, Joscha [1 ]
Wessel, Tom [2 ]
机构
[1] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Univ Tubingen, Fachbereich Math, Morgenstelle 10, D-72076 Tubingen, Germany
基金
欧洲研究理事会;
关键词
EXPONENTIAL DECAY; SPECTRAL GAP; QUANTUM; STABILITY;
D O I
10.1063/5.0123441
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We review recent results on adiabatic theory for ground states of extended gapped fermionic lattice systems under several different assumptions. More precisely, we present generalized super-adiabatic theorems for extended but finite and infinite systems, assuming either a uniform gap or a gap in the bulk above the unperturbed ground state. The goal of this Review is to provide an overview of these adiabatic theorems and briefly outline the main ideas and techniques required in their proofs.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Semiclassical theory for many-body fermionic systems
    Pierre Gaspard
    Sudhir R Jain
    Pramana, 1997, 48 : 503 - 516
  • [22] Semiclassical theory for many-body fermionic systems
    Gaspard, P
    Jain, SR
    PRAMANA-JOURNAL OF PHYSICS, 1997, 48 (02): : 503 - 516
  • [23] Semiclassical theory for spatial density oscillations in fermionic systems
    Roccia, J.
    Brack, M.
    Koch, A.
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [24] ADIABATIC PERTURBATION-THEORY FOR METALS AND PROBLEM OF LATTICE EQUILIBRIUM
    GEILIKMAN, BT
    USPEKHI FIZICHESKIKH NAUK, 1975, 115 (03): : 403 - 426
  • [25] Superfluidity and magnetism in two-dimensional fermionic optical lattice systems
    Fujihara, Yusuke
    Koga, Akihisa
    Kawakami, Norio
    PHYSICA B-CONDENSED MATTER, 2009, 404 (19) : 3324 - 3327
  • [26] ADIABATIC HOLONOMY AND EVOLUTION OF FERMIONIC COHERENT STATE
    ABE, S
    PHYSICAL REVIEW D, 1989, 39 (08): : 2327 - 2331
  • [27] Fermionic Spinon Theory of Square Lattice Spin Liquids near the Neel State
    Thomson, Alex
    Sachdev, Subir
    PHYSICAL REVIEW X, 2018, 8 (01):
  • [28] Adiabatic terminator for fermionic hierarchical equations of motion
    Zhang, Daochi
    Ding, Xu
    Zhang, Hou-Dao
    Zheng, Xiao
    Yan, YiJing
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2021, 34 (06) : 905 - 914
  • [29] Fermionic signature of the lattice monopoles
    Chernodub, MN
    Zakharov, VI
    PHYSICAL REVIEW D, 2002, 65 (09) : 940201 - 940207
  • [30] Free fermionic propagators on a lattice
    Campos, RG
    Tututi, ES
    PHYSICS LETTERS A, 2002, 297 (1-2) : 20 - 28