Perturbation of eigenvalues of matrix pencils and the optimal assignment problem

被引:9
|
作者
Akian, M
Bapat, R
Gaubert, S
机构
[1] Inst Natl Rech Informat & Automat, F-78153 Le Chesnay, France
[2] Indian Stat Inst, New Delhi 110016, India
关键词
D O I
10.1016/j.crma.2004.05.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the perturbation theory of Vigik, Ljusternik and Lidskii to the case of eigenvalues of matrix pencils. This extension allows us to solve certain degenerate cases of this theory. We show that the first order asymptotics of the eigenvalues of a perturbed matrix pencil can be computed generically by methods of min-plus algebra and optimal assignment algorithms. We illustrate this result by discussing a singular perturbation problem considered by Najman. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [41] The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach
    Boutry, G
    Elad, M
    Golub, GH
    Milanfar, P
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) : 582 - 601
  • [42] ON NONLOCAL PERTURBATION OF THE PROBLEM ON EIGENVALUES OF DIFFERENTIATION OPERATOR ON A SEGMENT
    Imanbaev, N. S.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (02): : 186 - 193
  • [43] The operations on matrix for assignment problem
    Yang, L. Y.
    Nie, M. H.
    Wu, Z. W.
    Nie, Y. Y.
    ADVANCES IN APPLIED MATHEMATICS, SYSTEMS, COMMUNICATIONS AND COMPUTERS, 2008, : 151 - +
  • [44] A PROBLEM OF OPTIMAL CHOICE AND ASSIGNMENT
    ROSE, JS
    OPERATIONS RESEARCH, 1982, 30 (01) : 172 - 181
  • [45] THE SECRETARY PROBLEM WITH OPTIMAL ASSIGNMENT
    TAMAKI, M
    OPERATIONS RESEARCH, 1984, 32 (04) : 847 - 858
  • [46] Generalized eigenvalues of nonsquare pencils with structure
    Lecumberri, Pablo
    Gomez, Marisol
    Carlosena, Alfonso
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) : 41 - 55
  • [47] A MINIMAX CHARACTERIZATION FOR EIGENVALUES OF HERMITIAN PENCILS
    NAJMAN, B
    YE, Q
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 144 : 217 - 230
  • [48] Structured perturbation analysis of sparse matrix pencils with s-specified eigenpairs
    Ahmad, Sk Safique
    Kanhya, Prince
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 602 : 93 - 119
  • [49] ON THE ORBIT CLOSURE PROBLEM FOR MATRIX PENCILS AND CONTROLLABLE SINGULAR SYSTEMS
    HINRICHSEN, D
    OHALLORAN, J
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 1324 - 1325
  • [50] On Optimal Separation of Eigenvalues for a Quasiperiodic Jacobi Matrix
    Binder, Ilia
    Voda, Mircea
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (03) : 1063 - 1106