Efficiency and Scalability of Dielectric Resonator Antennas at Optical Frequencies

被引:25
|
作者
Zou, Longfang [1 ,2 ]
Withayachumnankul, Withawat [1 ]
Shah, Charan M. [3 ]
Mitchell, Arnan [3 ,4 ]
Klemm, Maciej [2 ]
Bhaskaran, Madhu [3 ]
Sriram, Sharath [3 ]
Fumeaux, Christophe [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] Univ Bristol, Dept Elect & Elect Engn, Bristol BS8 1TH, Avon, England
[3] RMIT Univ, Sch Elect & Comp Engn, Funct Mat & Microsyst Res Grp, Melbourne, Vic 3001, Australia
[4] RMIT Univ, Sch Elect & Comp Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Melbourne, Vic 3001, Australia
来源
IEEE PHOTONICS JOURNAL | 2014年 / 6卷 / 04期
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会;
关键词
Dielectric resonator; resonance; nanoantenna; efficiency; dielectric metasurfaces;
D O I
10.1109/JPHOT.2014.2337891
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Dielectric resonators have been foreseen as a pathway for the realization of highly efficient nanoantennas and metamaterials at optical frequencies. In this paper, we study the resonant behavior of dielectric nanocylinders located on a metal plane, which in combination create dielectric resonator antennas operating in reflection mode. By implementing appropriate resonator models, the field distributions, the scaling behavior, and the efficiency of dielectric resonator antennas are studied across the spectrum from the microwave toward visible frequency bands. Numerical results confirm that a radiation efficiency above 80% can be retained up to the near-infrared with metal-backed dielectric resonators. This paper establishes fundamental knowledge toward development of high efficiency dielectric resonator antennas and reflection metasurfaces at optical frequencies. These dielectric resonators can be incorporated as basic elements in emerging applications, e.g., flat optical components, quantum dot emitters, and subwavelength sensors.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Dielectric resonator antennas with different applications
    Kishk, AA
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY 2003, 2003, 5445 : 425 - 429
  • [22] Numerical analysis of dielectric resonator antennas
    Sangiovanni, A
    Garel, PY
    Dauvignac, JY
    Pichot, C
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2000, 13 (2-3) : 199 - 215
  • [23] The Shape Synthesis of Dielectric Resonator Antennas
    Alroughani, Hamad
    McNamara, Derek A.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (08) : 5766 - 5777
  • [24] Dynamic behavior of dielectric resonator antennas
    Lvov, BV
    Petrunkin, VY
    [J]. ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 341 - 344
  • [25] Performance Analysis of Dielectric Resonator Antennas
    Kumar, Jitendra
    Gupta, Navneet
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2014, 75 (02) : 1029 - 1049
  • [26] Performance Analysis of Dielectric Resonator Antennas
    Jitendra Kumar
    Navneet Gupta
    [J]. Wireless Personal Communications, 2014, 75 : 1029 - 1049
  • [27] Application studies of dielectric resonator antennas
    Wu, Z
    [J]. IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, Vols 1 and 2, 2005, : 1435 - 1438
  • [28] Array of perforated dielectric resonator antennas
    Petosa, A
    Thirakoune, S
    Ittipiboon, A
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY SYMPOSIUM, VOLS 1-4 2004, DIGEST, 2004, : 1106 - 1109
  • [29] Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies
    Higuchi, Y
    Tamura, H
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2003, 23 (14) : 2683 - 2688
  • [30] Investigation on microwave dielectric materials for dielectric resonator antennas
    Kumar, Jitendra
    Gupta, Navneet
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2015, 47 (01) : 263 - 272