Entropic propagation of Gaussian and super-Gaussian-like beams

被引:6
|
作者
Alberdi, E
Lehman, M [1 ]
Torroba, R
Garavaglia, M
机构
[1] Univ Nacl Sur, Dept Fis, Lab Opt, RA-8000 Bahia Blanca, Argentina
[2] Sofilab SACV, Mexico City, DF, Mexico
[3] Univ Nacl La Plata, La Plata, Argentina
[4] Ctr Invest Opt, La Plata, Argentina
关键词
D O I
10.1016/S0030-4018(99)00732-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An entropic formulation to describe the free propagation of Gaussian beams, in a similar way to the thermodynamic theory is developed. We consider two basic applications: (1) an extension to super-Gaussian-like (SGL) beams, and (2) the effect of lenses (convergent and divergent) on the propagation of Gaussian beams. We are interested in such applications because the SGL profiles are obtained through the convolution product using rectangle and Gaussian functions and so, they can be related to the Gaussian beams. The propagation in the Fresnel and Fraunhofer regions are studied, obtaining the laws for the optical entropy of the system. Also, we include some properties and a brief discussion about the condition under which the beam can be considered as an isolated system. For both applications, the evolution of the characteristic width is derived from the entropic postulates. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Propagation and diffraction of truncated Gaussian beams
    Nourrit, V.
    De Bougrenet de la Tocnaye, J.-L.
    Chanclou, P.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18 (03): : 546 - 556
  • [22] Propagation of Gaussian beams in a nonlinear medium
    Freitas, DS
    de Oliveira, JR
    de Moura, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (07): : 1761 - 1769
  • [23] Propagation properties of Airy–Gaussian beams
    D. Deng
    H. Li
    Applied Physics B, 2012, 106 : 677 - 681
  • [24] Propagation of Gaussian beams in a nonlinear medium
    Freitas, D. S.
    De Oliveira, J. R.
    De Moura, M. A.
    Journal of Physics A: Mathematical and General, 31 (07):
  • [25] Propagation of wideband collimated Gaussian beams
    Gerasimova, L. O.
    RUSSIAN PHYSICS JOURNAL, 2013, 56 (03) : 280 - 285
  • [26] Hollow Gaussian beams and their propagation properties
    Cai, YJ
    Lu, XH
    Lin, Q
    OPTICS LETTERS, 2003, 28 (13) : 1084 - 1086
  • [27] PROPAGATION OF GAUSSIAN BEAMS IN ANISOTROPIC MEDIA
    BHAWALKAR, DD
    GONCHARENKO, AM
    SMITH, RC
    BRITISH JOURNAL OF APPLIED PHYSICS, 1967, 18 (10): : 1431 - +
  • [28] Propagation characteristics of nonparaxial Gaussian beams
    Deng Xiao-Jiu
    Niu Guo-Jian
    Liu Cai-Xia
    Xiao Su
    ACTA PHYSICA SINICA, 2011, 60 (09)
  • [29] Propagation and diffraction of truncated Gaussian beams
    Nourrit, V
    de la Tocnaye, JL
    Chanclou, P
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (03): : 546 - 556
  • [30] Beam propagation factor of decentred Gaussian and cosine-Gaussian beams
    Lü, B
    Ma, H
    JOURNAL OF MODERN OPTICS, 2000, 47 (04) : 719 - 723