RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System

被引:56
|
作者
Liu, Tina Y. [1 ,2 ]
Iavarone, Anthony T. [3 ]
Doudna, Jennifer A. [1 ,2 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA
来源
PLOS ONE | 2017年 / 12卷 / 01期
关键词
IN-VITRO RECONSTITUTION; STREPTOCOCCUS-THERMOPHILUS; STRUCTURAL BASIS; TRANSCRIPTION ELONGATION; CRYSTAL-STRUCTURE; IMMUNE-SYSTEM; CSM COMPLEX; CLEAVAGE; CASCADE; RECOGNITION;
D O I
10.1371/journal.pone.0170552
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65 degrees C than at 37 degrees C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryoelectron microscopy and x-ray crystallography.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] RNA-Targeting CRISPR-Cas Systems and Their Applications
    Burmistrz, Michal
    Krakowski, Kamil
    Krawczyk-Balska, Agata
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [42] Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application
    Hao, Mengyuan
    Cui, Yanhua
    Qu, Xiaojun
    FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [43] RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes
    East-Seletsky, Alexandra
    O'Connell, Mitchell R.
    Burstein, David
    Knott, Gavin J.
    Doudna, Jennifer A.
    MOLECULAR CELL, 2017, 66 (03) : 373 - +
  • [44] RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex
    Estrella, Michael A.
    Kuo, Fang-Ting
    Bailey, Scott
    GENES & DEVELOPMENT, 2016, 30 (04) : 460 - 470
  • [45] CRISPR-Cas System for RNA Detection and Imaging
    Chen Siyu
    Wang Rujia
    Lei Chunyang
    Nie Zhou
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (02) : 157 - 163
  • [46] CRISPR-Cas System for RNA Detection and Imaging
    Siyu Chen
    Rujia Wang
    Chunyang Lei
    Zhou Nie
    Chemical Research in Chinese Universities, 2020, 36 : 157 - 163
  • [47] The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus
    Terns, Rebecca M.
    Terns, Michael P.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 1416 - 1421
  • [48] Target RNA-guided protease activity in type III-E CRISPR-Cas system
    Wang, Xiaoshen
    Yu, Guimei
    Wen, Yanan
    An, Qiyin
    Li, Xuzichao
    Liao, Fumeng
    Lian, Chengwei
    Zhang, Kai
    Yin, Hang
    Wei, Yong
    Deng, Zengqin
    Zhang, Heng
    NUCLEIC ACIDS RESEARCH, 2022, 50 (22) : 12913 - 12923
  • [49] Functional Characterization of Type III-A CRISPR-Cas in a Clinical Human Methicillin-R Staphylococcus aureus Strain
    Li, Yang
    Mikkelsen, Kasper
    Lluch i Grane, Oleguer
    Wang, Zhenyu
    Tang, Yuanyue
    Jiao, Xinan
    Ingmer, Hanne
    Hoyland-Kroghsbo, Nina Molin
    Li, Qiuchun
    CRISPR JOURNAL, 2021, 4 (05): : 686 - 698
  • [50] Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity
    Rostol, Jakob T.
    Marraffini, Luciano A.
    NATURE MICROBIOLOGY, 2019, 4 (04) : 656 - 662