A Conformally Invariant Gap Theorem in Yang-Mills Theory

被引:5
|
作者
Gursky, Matthew [1 ]
Kelleher, Casey Lynn [2 ]
Streets, Jeffrey [3 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08540 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92617 USA
基金
美国国家科学基金会;
关键词
RIEMANNIAN-MANIFOLDS; YAMABE PROBLEM; 4; DIMENSIONS; ENERGY-GAP; FIELDS; CONNECTIONS; CURVATURE; EQUATIONS; 4-MANIFOLDS; FLOW;
D O I
10.1007/s00220-017-3070-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show a sharp conformally invariant gap theorem for Yang-Mills connections in dimension 4 by exploiting an associated Yamabe-type problem.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条
  • [31] Gauge-invariant formulation of the d=3 Yang-Mills theory
    Diakonov, D
    Petrov, V
    [J]. PHYSICS LETTERS B, 2000, 493 (1-2) : 169 - 174
  • [32] Towards a manifestly gauge invariant and universal calculus for Yang-Mills theory
    Arnone, S
    Gatti, A
    Morris, TR
    [J]. ACTA PHYSICA SLOVACA, 2002, 52 (06) : 621 - 634
  • [33] REMARKS ON THE RENORMALIZATION OF GAUGE-INVARIANT OPERATORS IN YANG-MILLS THEORY
    HENNEAUX, M
    [J]. PHYSICS LETTERS B, 1993, 313 (1-2) : 35 - 40
  • [34] O(4)-INVARIANT SOLUTIONS IN YANG-MILLS THEORY WITH SCALAR FIELD
    YATSUN, VA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (03) : 901 - 906
  • [35] Emergent Yang-Mills theory
    Robert de Mello Koch
    Jia-Hui Huang
    Minkyoo Kim
    Hendrik J.R. Van Zyl
    [J]. Journal of High Energy Physics, 2020
  • [36] Galilean Yang-Mills theory
    Bagchi, Arjun
    Basu, Rudranil
    Kakkar, Ashish
    Mehra, Aditya
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [37] THEORY OF YANG-MILLS FIELDS
    POPOV, DA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) : 879 - 885
  • [38] Generalization of the Yang-Mills theory
    Savvidy, G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (01):
  • [39] Galilean Yang-Mills theory
    Arjun Bagchi
    Rudranil Basu
    Ashish Kakkar
    Aditya Mehra
    [J]. Journal of High Energy Physics, 2016
  • [40] Yang-Mills as a Liouville theory
    Stieberger, Stephan
    Taylor, Tomasz R.
    Zhu, Bin
    [J]. PHYSICS LETTERS B, 2023, 846