The algebra Uq(sl2) in disguise

被引:14
|
作者
Bockting-Conrad, Sarah [1 ]
Terwilliger, Paul [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Quantum group; Quantum enveloping algebra; Equitable presentation; Tridiagonal pair; Q-RACAH TYPE; TRIDIAGONAL PAIRS; CLASSIFICATION;
D O I
10.1016/j.laa.2014.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a connection between the algebra U-q(sl(2)) and the tridiagonal pairs of q-Racah type. To describe the connection, let x, y(+/- 1), z denote the equitable generators for U-q(sl(2)). Let U-q(V) denote the subalgebra of U-q(sl(2)) generated by x, y(-1), z. Using a tridiagonal pair of q-Racah type we construct two finite-dimensional U-q(V)-modules. The constructions yield two nonstandard presentations of U-q(V) by generators and relations. These presentations are investigated in detail. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 585
页数:38
相关论文
共 50 条
  • [41] A class of finite-dimensional representations of Uq(sl2)
    Dong Ming Cheng
    Dong Su
    Acta Mathematica Sinica, English Series, 2013, 29 : 1703 - 1712
  • [42] Decomposition of ODES with an sl2 algebra of symmetries
    Jensen, CV
    GLOBAL ANALYSIS AND APPLIED MATHEMATICS, 2004, 729 : 193 - 199
  • [43] Ideals of the enveloping algebra U(sl2)
    Catoiu, S
    JOURNAL OF ALGEBRA, 1998, 202 (01) : 142 - 177
  • [44] Bosonization of Admissible Representation of Uq(sl2) at level -1/2
    YOSHITAKA KOYAMA
    Letters in Mathematical Physics, 1997, 41 : 13 - 29
  • [45] A Class of Finite-Dimensional Representations of Uq(sl2)
    Dong Ming CHENG
    Dong SU
    Acta Mathematica Sinica,English Series, 2013, (09) : 1703 - 1712
  • [46] Revisit on representation theory of quantum group Uq(sl2)
    Xu, Yongjun
    Chen, Jialei
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2024, 67 (01): : 23 - 32
  • [47] On the reality of spectra of Uq(sl2)-invariant XXZ Hamiltonians
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    Saint-Aubin, Yvan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [48] The Non-Toric Uq(sl2)-Symmetries on Quantum Polynomial Algebra kq[x±1, y]
    Xia, Xuejun
    Li, Xiaoming
    Li, Libin
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (06)
  • [49] The prime spectrum of the algebra Kq[X, Y] (sic) Uq (sl2) and a classification of simple weight modules
    Bavula, Vladimir V.
    Lu, Tao
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (03) : 888 - 945
  • [50] A Quantum Version of the Algebra of Distributions of SL2
    Angiono, Ivan
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2018, 54 (01) : 141 - 161