The two-dimensional electromagnetic inverse scattering problem for chiral media

被引:15
|
作者
Gerlach, T [1 ]
机构
[1] Univ Gottingen, Inst Numer & Appl Math, D-37083 Gottingen, Germany
关键词
D O I
10.1088/0266-5611/15/6/315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce Maxwell's equations with chiral constitutive equations in the form given by Fedorov and Bokut. In the case where the scatterer is an infinitely long cylinder we derive a two-dimensional scattering problem and discuss the existence and uniqueness of solutions via an integral equation approach. Then we formulate the inverse scattering problem to find the shape of the scatterer if the far-field data are known. We give a uniqueness result and describe a numerical reconstruction scheme.
引用
收藏
页码:1663 / 1675
页数:13
相关论文
共 50 条
  • [31] Inverse scattering of a two-dimensional periodic conductor
    Ho, CS
    Chiu, CC
    Lai, E
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 449 - 452
  • [32] ANALYSIS AND COMPUTATION FOR THE SCATTERING PROBLEM OF ELECTROMAGNETIC WAVES IN CHIRAL MEDIA
    Bao, Gang
    Zhang, Lei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (03) : 721 - 746
  • [33] Electromagnetic Scattering of Two-Dimensional Electronic Systems
    Abbas, Hasan T.
    Aljihmani, Lilia N.
    Nevels, Robert D.
    Qaraqe, Khalid A.
    IEEE ACCESS, 2019, 7 : 106521 - 106526
  • [34] Two-dimensional inverse phase change problem
    AlKhalidy, N
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSFER IV, 1996, : 427 - 437
  • [35] A two-dimensional inverse problem for the viscoelasticity equation
    V. G. Romanov
    Siberian Mathematical Journal, 2012, 53 : 1128 - 1138
  • [36] On the inverse fractal problem for two-dimensional attractors
    Deliu, A
    Geronimo, J
    Shonkwiler, R
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 355 (1726): : 1017 - 1062
  • [37] A two-dimensional inverse problem for the viscoelasticity equation
    Romanov, V. G.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1128 - 1138
  • [38] A two-dimensional inverse problem of geometrical optics
    Borghero, F
    Bozis, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (01): : 175 - 184
  • [39] On t-local solvability of inverse scattering problems in two-dimensional layered media
    Baev, A. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (06) : 1033 - 1050
  • [40] On t-local solvability of inverse scattering problems in two-dimensional layered media
    A. V. Baev
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1033 - 1050