A faster algorithm for the continuous bilevel knapsack problem

被引:3
|
作者
Fischer, Dennis [1 ]
Woeginger, Gerhard J. [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, Aachen, Germany
关键词
Bilevel programming; Fast algorithm; Knapsack problem;
D O I
10.1016/j.orl.2020.09.007
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We construct a fast algorithm with time complexity O(n log n) for a continuous bilevel knapsack problem with interdiction constraints for n items. This improves on a recent algorithm from the literature with quadratic time complexity O(n2). (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:784 / 786
页数:3
相关论文
共 50 条
  • [31] Bilevel programming model and solution algorithm for the continuous equilibrium network design problem
    Song, Yifan
    [J]. Gongku Jiaotong Keji/Journal of Highway and Transportation Research and Development, 16 (01): : 40 - 43
  • [32] An exact algorithm for the 0–1 linear knapsack problem with a single continuous variable
    Geng Lin
    Wenxing Zhu
    M. M. Ali
    [J]. Journal of Global Optimization, 2011, 50 : 657 - 673
  • [33] ON THE CONTINUOUS QUADRATIC KNAPSACK-PROBLEM
    ROBINSON, AG
    JIANG, N
    LERME, CS
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (01) : 99 - 108
  • [34] THE CONTINUOUS COLLAPSING KNAPSACK-PROBLEM
    POSNER, ME
    [J]. MATHEMATICAL PROGRAMMING, 1983, 26 (01) : 76 - 86
  • [35] On exact solution approaches for bilevel quadratic 0–1 knapsack problem
    Gabriel Lopez Zenarosa
    Oleg A. Prokopyev
    Eduardo L. Pasiliao
    [J]. Annals of Operations Research, 2021, 298 : 555 - 572
  • [36] Canonical Duality Theory and Algorithm for Solving Bilevel Knapsack Problems With Applications
    Gao, David Yang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (02): : 893 - 904
  • [37] Bilevel Knapsack with Interdiction Constraints
    Caprara, Alberto
    Carvalho, Margarida
    Lodi, Andrea
    Woeginger, Gerhard J.
    [J]. INFORMS JOURNAL ON COMPUTING, 2016, 28 (02) : 319 - 333
  • [38] Faster approximation schemes for the two-dimensional knapsack problem
    Heydrich, Sandy
    Wiese, Andreas
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 79 - 98
  • [39] Optimal parallel algorithm for the knapsack problem
    Li, Qing-Hua
    Li, Ken-Li
    Jiang, Sheng-Yi
    Zhang, Wei
    [J]. Ruan Jian Xue Bao/Journal of Software, 2003, 14 (05): : 891 - 896
  • [40] Fast Algorithm for the Quadratic Knapsack Problem
    A. V. Plotkin
    [J]. Vestnik St. Petersburg University, Mathematics, 2022, 55 : 57 - 63